• Title/Summary/Keyword: soft breakdown

Search Result 28, Processing Time 0.027 seconds

Effects of Mask Misalignment and Crystal Defects on the Breakdown characteristics in the PN Junction Isolation (마스크 오정렬 및 결정 결함이 PN 접합 아이솔레이션의 항복 특성에 미치는 영향)

  • Jo, Gyeong-Ik;Baek, Mun-Cheol;Song, Seong-Hae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 1984
  • Breakdown characteristics, specifically, soft breakdown phenomena of the PN junction isolation were studied in terms of their dependence on the mask misaliglment and the amount of process-related defects. Varying the distance between the buried layer and the isolation by intentional misalignment of the isolation masts had no effects on the soft breakdown phenomena except for the change of the breakdown voltage. The soft breakdown phenomena, as characterized as a state of excessive reverse current below the breakdown voltage, were found out to result mainly from the oxidation-induced stacking faults (OSF) introduced during the fabrication process.

  • PDF

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

Estimated Soft Information based Most Probable Classification Scheme for Sorting Metal Scraps with Laser-induced Breakdown Spectroscopy (레이저유도 플라즈마 분광법을 이용한 폐금속 분류를 위한 추정 연성정보 기반의 최빈 분류 기술)

  • Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.

Shape Prediction Method for Electromagnet-Embedded Soft Catheter Robot (전자석 내장형 소프트 카테터 로봇 형상 예측 방법)

  • Sanghyun Lee;Donghoon Son
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 2024
  • This study introduces a novel method for predicting the shape of soft catheter robots embedded with electromagnets. As an advancement in the realm of soft robotics, these catheter robots are crafted from flexible and pliable materials, ensuring enhanced safety and adaptability during interactions with human tissues. Given the pivotal role of catheters in minimally invasive surgeries (MIS), our design stands out by facilitating active control over the orientation and intensity of the inbuilt electromagnets. This ensures precise targeting and manipulation of the catheter segments. The research encompasses a comprehensive breakdown of the magnetic modeling, tracking algorithms, experimental layout, and analytical techniques. Both simulation and experimental results validate the efficacy of our method, underscoring its potential to augment accuracy in MIS and revolutionize healthcare-oriented soft robotics.

Compromised extraction sockets: a new classification and prevalence involving both soft and hard tissue loss

  • Kim, Jung-Ju;Amara, Heithem Ben;Chung, Inna;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.2
    • /
    • pp.100-113
    • /
    • 2021
  • Purpose: Previous studies have solely focused on fresh extraction sockets, whereas in clinical settings, alveolar sockets are commonly associated with chronic inflammation. Because the extent of tissue destruction varies depending on the origin and the severity of inflammation, infected alveolar sockets may display various configurations of their remaining soft and hard tissues following tooth extraction. The aim of this study was to classify infected alveolar sockets and to provide the appropriate treatment approaches. Methods: A proposed classification of extraction sockets with chronic inflammation was developed based upon the morphology of the bone defect and soft tissue at the time of tooth extraction. The prevalence of each type of the suggested classification was determined retrospectively in a cohort of patients who underwent, between 2011 and 2015, immediate bone grafting procedures (ridge preservation/augmentation) after tooth extractions at Seoul National University Dental Hospital. Results: The extraction sockets were classified into 5 types: type I, type II, type III, type IV (A & B), and type V. In this system, the severity of bone and soft tissue breakdown increases from type I to type V, while the reconstruction potential and treatment predictability decrease according to the same sequence of socket types. The retrospective screening of the included extraction sites revealed that most of the sockets assigned to ridge preservation displayed features of type IV (86.87%). Conclusions: The present article classified different types of commonly observed infected sockets based on diverse levels of ridge destruction. Type IV sockets, featuring an advanced breakdown of alveolar bone, appear to be more frequent than the other socket types.

The Possibilities to use the Non- Destructive Testing on Diagnosing Wears of Wagon Chassis

  • Munkhtsetseg, T.
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • This report is devoted to the problems of Mongolian Railway Transportation Safety such as high length of wagon service life, defects due to the more factors of exploitation, idle time, increase of faults, poor condition of repairing shops and more hand and mechanical operations and these conditions are quite difficult to meet the safety and reliability of increasing transportation from day to day. The paper discusses that the most optimum solution is diagnosing before occurring wear, breakdown, and defects on the basis of studying characteristics of structural material breakdown, residual methods of voltage, effects of material hardness and linear defects of a crystal net and the reform of machines is very important to implement it. It focuses the structures, characteristics of the material transportation and tests and analyses of the wagon cart which has to meet the traffic safety of wagons and slow and soft movement. The study is done on the wagon chassis which has to meet the traffic safety of luggage wagons.

Physicochemical and pasting properties of rice starches from soft rice varieties developed by endosperm mutation breeding (배유 돌연변이처리로 개발된 연질미 전분의 이화학적 특성)

  • Kim, Jae Suk;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2019
  • The soft rice varieties, Hangaru and Singil, were developed via mutation breeding using N-methyl-N-nitrosourea treatment to obtain dry-milled rice flours. The physicochemical, morphological, and pasting properties of these starches were compared with those of Seolgaeng and Chuchung starches. Singil starch was found to exhibit the highest amylose content and initial pasting temperature, whereas Hangaru starch exhibited the highest water binding capacity and swelling power. Hangaru starch's granule size at $d_{50}$ was the largest among the four different starch types. Some Seolgaeng, Hangaru, and Singil granules were observed to have a round-faced polygon shape. Furthermore, the crystallinity of all four starch types was type A. The peak, trough, and final viscosities of the soft rice starches were also lower than those of normal starches. Notably, Hangaru starch showed the highest breakdown viscosity, but the lowest total setback viscosity among the four starches. From these results, the starch characteristics of the soft rice flours were discovered to be different based on the rice variety.

Prediction Model for Gas-Energy Consumption using Ontology-based Breakdown Structure of Multi-Family Housing Complex (온톨로지 기반 공동주택 분류체계를 활용한 가스에너지 사용량 예측 모델)

  • Hong, Tae-Hoon;Park, Sung-Ki;Koo, Choong-Wan;Kim, Hyun-Joong;Kim, Chun-Hag
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.110-119
    • /
    • 2011
  • Global warming caused by excessive greenhouse gas emission is causing climate change all over the world. In Korea, greenhouse gas emission from residential buildings accounts for about 10% of gross domestic emission. Also, the number of deteriorated multi-family housing complexes is increasing. Therefore, the goal of this research is to establish the bases to manage energy consumption continuously and methodically during MR&R period of multi-family housings. The research process and methodologies are as follows. First, research team collected the data on project characteristics and energy consumption of multi-family housing complexes in Seoul. Second, an ontology-based breakdown structure was established with some primary characteristics affecting the energy consumption, which were selected by statistical analysis. Finally, a predictive model of energy consumption was developed based on the ontology-based breakdown structure, with application of CBR, ANN, MRA and GA. In this research, PASW (Predictive Analytics SoftWare) Statistics 18, Microsoft EXCEL, Protege 4.1 were utilized for data analysis and prediction. In future research, the model will be more continuous and methodical by developing the web-base system. And it has facility manager of government or local government, or multi-family housing complex make a decision with definite references regarding moderate energy consumption.

Physicochemical properties of powdered, soft and hard type rice flour by different milling methods (제분방법에 따른 분질, 연질 및 경질미 가루의 이화학적 특성)

  • Choi, Ok Ja;Jung, Hee Nam;Shim, Ki Hoon
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.174-181
    • /
    • 2015
  • This study investigated the physicochemical properties of three different types of rice flour prepared via dry and wet milling. The powder, soft, and hard-types of rice flour were Suwon No. 542, Suwon No. 541, and Unbong No. 30, respectively. The analysis of the proximate compositions of the different types of rice flour showed that their moisture content was 7.03~7.99%, their crude protein was 7.94~8.35%, their crude lipid was 0.71~1.49% and their crude ash was 0.25~0.82%. For the Hunter's color values, the L value was highest in the wet-milled rice flour, the a value was highest in the dry-milled rice flour, and the b value was highest in the dry-milled rice flour. All the samples showed distinctive rice starch particles in the particle analysis using scanning electron microscope. The dry-milled rice flour showed the greatest amount of irregular particles and the coarsest texture. The water absorption and water solubility indices were higher in the wet-milled soft- and hard-type rice flour. The crystallinities of the samples by X-ray diffractography were all A-type, but the crystallinity of the dry-milled hard-type rice flour was higher in diffraction degree. For the amylogram properties, the wet-milled soft-type rice flour showed the highest maximum viscosity, breakdown and setback. In the meanwhile, the dry-milled soft-type rice flour showed the highest initial pasting temperature, onset, peak, and end temperatures despite of the reverse enthalpy.