• Title/Summary/Keyword: soil humidity

Search Result 359, Processing Time 0.029 seconds

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Effect of Environmental Conditions on the Biodegradation of Cellulose Fibers - Effect of Humidity in Soil - (환경 조건에 따른 셀룰로스계 섬유의 생분해성 - 토양 수분율을 중심으로 -)

  • Kang, Yun-Kyung;Park, Chung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1027-1036
    • /
    • 2005
  • Based on the correlation analysis result of preceding research, the biodegradabilities of cellulose fibers were closely related to the moisture regain of the samples, which reflects the hydrophilicity and internal structure of the fibers. In addition to this factor, it was expected that the biodegradation conditions influence the biodegradability of fibers. In this study, widely used cellulose fibers including cotton, rayon, and acetate were used. The biodegradabilities of cellulose fibers were measured by soilburial test, and then the degradation behaviors based on each condition were compared. Moreover, the effects of degradation conditions such as humidity of the soil were investigated. Changes in the internal structure of samples were also observed by X-ray analysis according to the soil burial time. It was shown that humidity of soil facilitated the degradation of cotton, rayon, and acetate fibers, showing higher degradation rate with higher humidity in soil. This effect was shown to be much greater in the fibers of high moisture regain such as cotton and rayon. In respect of microstructure change, crystallinities and their crystal size of fibers decreased remarkably in the soil of higher humidity. It was revealed that degradation of crystalline area was more dependent on the soil humidity than that of amorphous area.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Effects of Indoor Relative Humidity Conditions on the Growth of Arachniodes aristata and Pyrrosia lingua in Native Ferns (실내 습도조건이 가는쇠고사리, 석위의 생육에 미치는 영향)

  • Bang, Kwang-Ja;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.34-38
    • /
    • 2002
  • This studies were performed to determine the effects of indoor relative humidity conditions on the growth of Arachniodes aristata and Pyrrosia lingua in native fern and investigate an applicable possibility of indoor plants. The response of Arachniodes aristata and Pyrrosia lingua was evaluated in growth chamber (KG-8407-87) to 3 relative humidity and 3 soils. Relative humidity was applied to 25%, 50%, 90%; soils were prepared based on soil mixture(SM), top field soil(TF), masa soil(MS). Results of experiments are as follows ; 1. Under a low humidity condition, such as 25%, Water contents, chlorophyll content, ornamental value of Arachniodes aristata and Pyrrosia lingua decreased much more a 50-90%. 2. The growth of Arachniodes aristata were best in pots under a soil mixture(SM) but Pyrrosia lingua were field top soil(FT) under 25%. It seemed that Pyrrosia lingua due to tolerance of desiccation more than Arachniodes aristata. Though these studies, coefficient of relative humidity and soil was plays an important role in Arachniodes aristata and Pyrrosia lingua growth in indoor environments.

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

산림토양에서의 Phenanthrene, Pyrene, Benzo(a)pyrene의 휘발 속도: 토양온도와 대기습도의 영향

  • 이신향;김현숙;이동수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.99-102
    • /
    • 2001
  • The soil-to-air fluxes of three PAHs(Phenanthrene, Pyrene, Benzo(a)pyrene) from a laboratory contaminated forest soil were investigated in experimental microcosms. The effects of soil temperature(45$^{\circ}C$, $25^{\circ}C$, 5$^{\circ}C$) and relative humidity(0%, 100%) were investigated according to existence of the humic layer(O layer) over the mineral layer(A layer). Volatilization flux experiments were carried out for a period of 96 hrs. The resulting PAHs volatilization fluxes from the different conditions were quantified and compared. In the mineral layer, highest volatilization flux among the individual PAHs was Phenanthrene >Pyrene> Benzo(a)pyrene on the conditions of 45 $^{\circ}C$, RH=100%. In the humic layer over the mineral layer, maximum volatilization flux was Phenanthrene on the condition of 45$^{\circ}C$, RH=0%. Results from flux experiments showed that volatilization fluxes of PAHs were dependent on soil temperature. Existance of humic layer over the mineral layer delayed transportation to the air of especially heaveir molecular PAHs. But, if humic layer is contained water sufficiently, it is possible that volatilization fluxes are enhanced by water convective flux according to variation of soil temperature and air relative humidity.

  • PDF

Fabrication of Humidity Control Ceramics from Drinking-Water Treatment Sludge and Onggi Soil

  • Lee, Min-Jin;Lee, Hyeon-Jun;Kim, Kyungsun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.362-366
    • /
    • 2016
  • In this study, humidity control ceramics with good adsorption/desorption capabilities and high strength were fabricated from drinking-water treatment sludge (DWTS) and Onggi soil. The DWTS powder heat-treated at $800^{\circ}C$ and Onggi soil were mixed at weight ratios of 40:60, 50:50, 60:40, and 70:30 and fired at $800-1000^{\circ}C$. With increasing DWTS content, density and flexural strength increased. For the sample with a DWTS:Onggi soil weight ratio of 70:30, porosity and specific surface area decreased with increasing firing temperature, attributed to densification and grain growth at high firing temperatures. From the results obtained, a firing temperature of $800^{\circ}C$ is the optimum condition for fabricating humidity control ceramics with good adsorption/desorption capabilities and strength. The maximum adsorbed amount for the sample fired at $800^{\circ}C$ was $439g/m^2$.

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Methodology to Simultaneously Optimize the Inlet Ozone Concentration to Oxidize NO and Relative Humidity Composition for the $NO_x$ Degradation using Soil Bio-filter

  • Cho, Ki-Chul;Hwang, Kyung-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.83-91
    • /
    • 2008
  • This work investigated the methodology to simultaneously optimize the ozone and relative humidity composition for the $NO_x$ degradation using soil biofilter. Experiments were made as a function of inlet ozone concentration ($0{\sim}1,770\;ppb$) and relative humidity ($38{\sim}81%$). Factorial design ($2^2+3$) and response surface methodology by central composite designs were used to examine the role of two factors and optimal response condition on $NO_x$ degradation. It was found that a second-order response surface model can properly interpret the experimental data with an $R^2$-value of 0.9730 and F-value of 71.83, based on which the maximum $NO_x$ degradation was predicted up to 92.8% within our experimental conditions.

Property of Thermal Conduction of Reinforced Soil Wall (보강 흙벽의 열전도 특성)

  • 장병욱;서동욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.638-644
    • /
    • 1999
  • The objectives of the study are to investigate thermal conductivity(TC) and coefficient of thermal transmission (CTT) according to the type of soils, the presence of reinforceemnt, temperature, relative humidity and to analyze experimentally the characteristics of thermal transfer of reinforced soil wall. Results are summarized as follows ; 1) Clayey soil has high value of TC and CTT than sandy soil. 2) TC and CTT of reinforced soil wall is about 6∼17% higher than those of reinforced one, 3) It is founded that the effect of relative humidity on the soil wall is important at the same temperature and 4) As the temperature is high, it is appeared that TC and CTT are high.

  • PDF