• Title/Summary/Keyword: soil inoculation

Search Result 367, Processing Time 0.02 seconds

Effect of Dispersed and Proximate Inoculation Methods of Glomus etunicatum on Root Colonization of Sorghum-Sudangrass Hybrid

  • Lee, Seonmi;Selvakumar, Gopal;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Choi, Joonho;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.373-378
    • /
    • 2013
  • Information on the effective application method of arbuscular mycorrhizal fungi (AMF) inoculum is still inadequate. This work was performed to assess two AMF inoculation methods (dispersed and proximate) on root colonization of sorghum-sudangrass hybrid (Sorghum bicolor L.). In dispersed inoculation method, spores were inoculated in 2 kg pots of soil in which 5 day-old seedlings were transplanted and maintained for 50 days. In the proximate inoculation method, spores were first introduced in 500 mL pots where seeds were sown. After 10 days, the seedlings with the 500 mL soil were transferred to 2 kg pots without disturbing the contents. After 50 days of growth, root colonization and arbuscule abundance significantly increased (over 100%) in proximate method of inoculation. Moreover, sorghum-sudangrass hybrid had higher shoot growth (182.5 cm) and Glomalin related soil protein (GRSP) production in proximate method. Nutrient accumulation, particularly total nitrogen (82.61 mg $plant^{-1}$), was also found to be higher in proximate method of inoculation. Our results demonstrate that the proximate method of inoculation may improve the early stage mycorrhizal symbiosis and inoculum performance in Saemangeum reclaimed soil.

Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil

  • Kim, Kiyoon;Kwak, Chaemin;Lee, Youngwook;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The objective of this study was to determine the effect of single and co-inoculation of plant growth promoting bacteria (PGPB) on early plant growth in Saemangeum reclaimed soil. Plant growth promoting Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 were inoculated on maize (Zea mays L.) and sorghum-sudangrass hybrid (Sorghum bicolor L.) grown in Saemangeum reclaimed soil. Single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased plant height, dry biomass accumulation and macro-nutrient accumulation of maize and sorghum-sudangrass hybrid. M. oryzae CBMB20 treatment increased plant height in maize by 41.2% at 30 days after sowing (DAS), shoot dry weight and total dry weight compared to non-inoculated treatment. Macro-nutrient accumulation (N and P) in maize roots was significantly increased with co-inoculation treatment, K and Ca content was significantly increased at B. iodinum RS16 treatment compared to non-inoculated treatment. Macro-nutrient accumulation (P, K, Ca and Mg) in shoot was higher with M. oryzae CBMB20 treatment compared to non-inoculated treatment. In case of sorghum-sudangrass hybrid, co-inoculation treatment showed 33.7% increase in plant height compared to non-inoculated treatment at 30 DAS. M. oryzae CBMB20 treatment increased root dry weight and total dry weight, macro-nutrient accumulation in roots and N, Ca and Mg accumulation in shoot compared to non-inoculated treatment. P and K accumulation in shoot was significantly increased at co-inoculation treatment compared to non-inoculated treatment. This pot culture experiment demonstrated that single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased the early growth and nutrient accumulation of maize and sorghum-sudangrass hybrid.

Effects of ectomycorrhizal fungi on soil-borne plant pathogenic fungi in red pine seedlings

  • Seo, Il-Won;Lee, Jong-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.89.1-89
    • /
    • 2003
  • Disease suppression by ectomycorrhizal(ECM) fungi has been demonstrated on red pine seedlings. Culturing of pathogenic fungi on petri plates containing culture filtrates of ECM fungi showed that culture filtrates of the ECM fungus Hebeloma cylindrosporum may inhibit the mycelial growth of all tested soil-borne plant pathogenic(SBPP) fungi upto 60%, In order to examine the effects of ECM fungi on SBPP fungi and on red pine seedlings, both symbiotic and pathogenic fungi were inoculated into the soil with red pine seedlings by three inoculation methods; pre-inoculation of SBPP fungi 10 days before inoculation of ECM fungi, simultaneous inoculation of both fungi, post-inoculation of SBPP fungi 60 days after inoculation of ECM fungi. Seedling mortality, seedling growth, and ectomycorrhizal formation by the combined treatments were examined and compared. Pine seedlings were dead by the pre-inoculation of pathogenic fungi, except Rhizina undulate which required 9-12 days, within 6 days after inoculation. Among pathogenic fungi tested, Fusarium oxysporum was the most pathogenic with the mortality of 44%. However, no dead seedlings were shown by simultaneous inoculation of both fungi or pre-inoculation of ECM fungi. In addition, pine seedlings treated by simultaneous or post-inoculation of SBPP fungi were relatively higher than those treated by pre-inoculation in diameter at root crown and the number of ectomycorrhizal roots. There were no significant differences among inoculation methods in root length and dry weight of treated seedlings. It means that ECM fungi somehow play a role in protecting primary roots of red pine seedlings against invasion by the SBPP fungi.

  • PDF

Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China

  • Zhang, Yanxu;Bi, Yinli;Shen, Huihui;Zhang, Longjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.848-855
    • /
    • 2020
  • Land subsidence induced by underground coal mining leads to severe ecological and environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to improve plant growth and soil properties. We aimed to assess the effects of AMF on the growth and soil properties of sea buckthorn under field conditions at different reclamation times. Inoculation with AMF significantly promoted the survival rate of sea buckthorn over a 50-month period, while also increasing plant height after 14, 26, and 50 months. Crown width after 14 months and ground diameter after 50 months of inoculation treatment were significantly higher than in the uninoculated treatment. AMF inoculation significantly improved plant mycorrhizal colonization rate and promoted an increase in mycelial density in the rhizosphere soil. The pH and electrical conductivity of rhizosphere soil also increased after inoculation. Moreover, after 26 and 50 months the soil organic matter in the inoculation treatment was significantly higher than in the control. The number of inoculated soil rhizosphere microorganisms, as well as acid phosphatase activity, also increased. AMF inoculation may play an active role in promoting plant growth and improving soil quality in the long term and is conducive to the rapid ecological restoration of damaged mining areas.

Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20

  • Lee, Min-Kyoung;Chauhan, Puneet Singh;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Park, Kee-Woong;Sa, Tong-Min
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • In order to exploit Methylobacterium oryzae CBMB20 as of plant growth promoting agent, different inoculation methods have been evaluated. The present study aimed to evaluate soil, foliar, and soil+foliar inoculations of M. oryzae CBMB20 to improve the growth, fruit yield, and nutrient uptake of red pepper (Capsicum annuum L.) under greenhouse conditions. The population range of green fluorescent protein (gfp)-tagged M. oryzae CBMB20 using the three inoculation methods was 2.5-2.9 ${\log}_{10}$ cfu/g in the rhizosphere and 4.5-6.0 ${\log}_{10}$ cfu/g in the phyllosphere of red pepper plants. Confocal laser scanning microscopy results confirmed the colonization of M. oryzae CBMB20 endophytically on leaf surface. Plant height, fruit dry weight, and total biomass were significantly higher ($p{\leq}0.05$) in all M. oryzae CBMB20 inoculation methods as compared to non-inoculated control. Furthermore, uptake of mineral nutrients such as N, P, K, Ca, and Mg in red pepper plants in all M. oryzae CBMB20 inoculation methods was higher than in non-inoculated control. Comparative results of inoculation methods clearly demonstrated that soil+foliar inoculation of M. oryzae CBMB20 lead to the highest biomass accumulation and nutrient uptake which may be due to its efficient colonization in the red pepper rhizosphere and phyllosphere.

Differential Response of Etiolated Pea Seedlings to Inoculation with Rhizobacteria Capable of Utilizing 1-Aminocydopropane-1-Carboxylate or L-Methionine

  • Shaharoona, Baby;Arshad, Muhammad;Khalid, Azeem
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The majority of soil microorganisms can derive ethylene from L-methionine (L-MET), while some rhizobacteria can hydrolyze 1-aminocyclopropane-1-carboxylate (ACC) due to their ACC-deaminase activity. In this study, three strains having either ACC-deaminase activity (Pseudomonas putida biotype A, $A_7$), or the ability to produce ethylene from L-MET (Acinetobacter calcoaceticus, $M_9$) or both (Pseudomonas fluorescens, $AM_3$) were used for inoculation. The highly ethylene specific bioassay of a classical 'triple' response in pea seedlings was used to investigate the effect of the inoculation with the rhizobacteria in the presence of 10 mM ACC or L-MET. The exogenous application of ACC had a concentration-dependent effect on the etiolated pea seedlings in creating the classical 'triple' response. The inoculation with P. putida diluted the effect of ACC, which was most likely due to its ACC-deaminase activity. Similarly, the application of $Co^{2+}$ reduced the ACC-imposed effect on etiolated pea seedlings. In contrast, the inoculation of A. calcoaceticus or P. fluorescens in the presence of L-MET caused a stronger classical 'triple' response in etiolated pea seedlings; most likely by producing ethylene from L-MET. This is the first study, to our knowledge, reporting on the comparative effect of rhizobacteria capable of utilizing ACC vs L-MET on etiolated pea seedlings.

Response of Chickpea to Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza, Nitrogen and Phosphorus

  • Solaiman, A.R.M.;Molla, M.N.;Hossain, M.D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.527-533
    • /
    • 2006
  • The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore $100g^{-1}$ rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod $plant^{-1}$, number of seed $pod^{-1}$, seed and stover yields of chickpea. The maximum seed yield of 3.33 g $plant^{-1}$ was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

  • Solaiman A. R. M.;Rabbani M. G.;Molla M. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effects of Plant Age Inoculum Concentration and Inoculation Method on Root Gall Development of Clubroot Disease of Chinese Cabbage Caused by Planmodiophora brassicae (배추무사마병의 뿌리혹 형성에 미치는 묘령, 접종원 농도 및 접종방법의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.90-94
    • /
    • 1999
  • Effect of inoculum concentration inoculation method and plant age on development of clubroot disease of Chinese cabbage seedling were examined in growth chambers. Root galls were developed at the concentration of 105 resting spore or above per ml of incoulum and as the inoculum concentration became higher rate of development of root galls was faster. In the plants with root gall development fresh weight of above ground parts was reduced to 30-44% of that of healthy plants but root weight increased by 4-10 times. Growth of diseased plants was greatly reduced as compared to healthy plants. Planting in the diseased soil as a inoculation method was most effective for disease development showing uniform infections but time of initial root gall development was delayed by root soaking inoculation. Some plants inoculated by soil drenching method did not develop root galls. However root gall enlargement after its initial formation did not differ greatly among inoculation methods. Nine-day-old seedlings showed poor development of root gall but 16-days-old seedlings was found to be most adequate for inoculation for gall development.

  • PDF

Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil

  • Ji Ho Lee;Hyoju Yang;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.886-894
    • /
    • 2023
  • During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.