• 제목/요약/키워드: soil surface treatment

검색결과 400건 처리시간 0.031초

Furrow Cover Effects of Black Non-woven Fabric on Reduction of Nitrogen and Phosphorus Discharge from Upland Soil Used for Red Pepper Cultivation

  • Hong, Seung Chang;Kim, Min Kyeong;Jung, Goo Buk;So, Kyu Ho
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.671-676
    • /
    • 2015
  • Control of surface runoff from upland soil is essential to reduce nonpoint source pollution. The use of non-woven fabric as a soil cover can be helpful to control surface runoff. The field experiment was conducted to evaluate the furrow cover effects of black non-woven fabric on the nutrient discharge from upland soil used for red pepper cultivation. The experimental plots consisted of chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) treatment. Each nutrient material treatment plot has control (no furrow cover (NFC)) and black non-woven fabric cover treatment, respectively. The amount of nutrient application was chemical fertilizer of $190-112-149(N-P_2O_5-K_2O)kgha^{-1}$, cow manure compost of $29.5tonha^{-1}$, and pig manure compost of $7.9tonha^{-1}$ as recommended amount after soil test for red pepper cultivation. Compared to control (NFC), furrow cover treatment with black non-woven fabric reduced the amount of T-N discharge by 50% at CF treatment, 36.9% at CMC treatment, and 44.8% at PMC treatment. Furrow cover treatment with black non-woven fabric reduced the amount of T-P discharge by 37.1% at CF treatment, 49.9% at CMC treatment, and 63.4% at PMC treatment compared to control (NFC). The production of red pepper did not show significant difference. There was no weed occurring in furrow cover treatment plots with black non-woven fabric. Results from this study showed that the furrow cover with black non-woven fabric could play a significant role in reduce nutrient discharge from upland soil used for red pepper cultivation.

답압(踏壓)으로 훼손(毁損)된 임간나지(林間裸地)의 임상식생복원(林床植生復元)에 관한 연구(硏究)(I) -임상식생복원(林床植生復元)에 미치는 파종(播種), 시비(施肥) 및 표토처리효과 (表土處理效果)- (Studies on Restoration of Forest-Floor Vegetation Devastated by Recreational Trampling (I) -Seeding, Fertilizing and Soil Surface Treatment Effect on Restoration of Forest-Floor Vegetation-)

  • 오구균;우보명
    • 한국산림과학회지
    • /
    • 제81권1호
    • /
    • pp.53-65
    • /
    • 1992
  • 본(本) 연구(硏究)는 자연성(自然性)을 유지(維持)하고 자연생태계(自然生態系)를 보전(保全)하면서 동시에 산림휴양(山林休養)에 이용(利用)하려는 산림지역(山林地域)에서 이용객(利用客)들의 답압(踏壓)에 의하여 훼손(毁損)된 임상식생(林床植生)을 복원(復元)할 수 있는 방법을 구명(究明)하기 위하여 파종(播種), 시비(施肥) 및 표토처리(表土處理)의 요인실험(要因實驗)을 임간나지(林間裸地)에서 4년 동안 (1987~1990) 실시하였다. 경기도(京畿道) 안양시(安養市) 관악산(冠岳山) 수목원(樹木園)에서 임상식생복원실험(林床植生復元實驗)을 위하여 분할구배치법(分割區配置法)(주구(主區): 시비(施肥), 세구(細區): 표토처리(表土處理)${\times}$파종(播種)), 난괴법(亂塊法)(시비(施肥)${\times}$파종(播種))에 의한 요인실험(要因實驗)을 3반복(反復)으로 실시한 바 다음과 같은 연구결과(硏究結果)를 얻었다. 표토(表土)의 연화(軟化)를 위한 굴혈처리후(堀穴處理後) 70% 피복도(被覆度)를 나타내는 볏짚거적 피복처리(被覆處理)가 임간나지(林間裸地)에서 파종(播種)한 종자(種子)의 발아(發芽), 활착(活着) 및 생장(生長)에 미치는 효과(效果)가 가장 크게 나타났으며, 특히 볏짚거적 피복처리(被覆處理)는 표토침식지(表土浸蝕地)의 표토안정(表土安定) 및 치수활착(稚樹活着)에 미치는 효과가 양호하였고, 삽으로 파서 뒤엎은 완전표토연화처리(完全表土軟化處理)는 식생천이계열상(植生遷移系列上) 후기(後期)에 속하는 수종(樹種)들의 발아(發芽), 활착(活着) 및 초기생장(初期生長)에 특히 효과적(效果的)인 것으로 나타났다. 다년간(多年間) 계속적인 답압(踏壓)으로 임상표토(林床表土)의 토괴경도(土壞硬度)가 높아지고, 또 자생식물(自生植物)들의 종자(種子)가 잔류(殘留)할 수 있는 표토(表土)가 유실(流失)된 임간나지(林間裸地)에서 조기(早期)에 임상식생(林床植生)을 복원(復元)할 때에는 식생천이계열상(植生遷移系列上) 초기(初期)에서 중기계열(中期系列)에 속하는 자생수종(自生樹種)들을 파종(播種)하는 것이 효과적(效果的)인 것으로 나타났다. 자생식물(自生植物)들의 종자(種子)가 잔류(殘留)할 수 있는 표토(表土)가 유실(流失)된 임간나지(林間裸地)에서 임상식생복원(林床植生復元)(착생개체수(着生個體數)와 수관면적(樹冠面積))에는 파종(播種), 표토굴혈연화(表土掘穴軟化) 및 볏짚거적피복처리시(被覆處理時)에 약 3년이 소요되었다. 표사연화처리(表士軟化處理)는 처리 후 약 2년 동안 표토연화효과(表土軟化效果)가 지속되었으며 또 파종(播種) 및 표토처리(表土處理)는 활착개체수(活着個體數) 증대(增大)를 통해 표토연화(表土軟化), 낙엽퇴고정(落葉堆固定) 등 표토환경개선(表土環境改善)에 영향(影響)을 미치었다. 실험지표토(實驗地表土)의 열악(劣惡)한 물리적조건(物理的條件) 즉, 낮은 보수능(保水能)과 과건피해(過乾被害), 표토침식(表土浸蝕)으로 인한 치수(稚樹)들의 뿌리 노출과 고사(枯死) 및 양료유실(養料流失) 등으로 임상시비효과(林床施肥效果)는 대체적으로 나타나지 않았다. 그러나, 질소(窒素)와 인산시비(燐酸施肥)는 식생천이계열(植生遷移系列) 후기수종(後期樹種)들의 치수활착율(稚樹活着率)을 증진(增進)시키는 데는 효과적(效果的)이었다.

  • PDF

지중가온이 온실의 난방부하에 미치는 영향 (The Effect of Soil Warming on the Greenhouse Heating Load)

  • 남상운
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

옥상녹화에서 토심, 토양배합비 및 지피식물에 따른 식재지반 수분 및 온도변화 (Change of the Moisture and Temperature in Planting Ground as Effected by Different Soil Thickness, Soil Mixture Ratios and Ground Cover Plants in the Green Roof System)

  • 주진희;윤용한
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2010
  • This paper has attempted to investigate the change in soil moisture volume and temperature of architecture by planting ground(soil thickness and soil mixture ratio) and ground cover plants(Sedum sarmentosum, Zoysia japonica, Chrysanthemum zawadskii) for middle region green roof system. For this, a test was conducted on the roof of Konkuk University building from April 2009 to October 2009. In terms of treatment, five types(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) depending on soil mixture ratio and two types(15cm, 25cm) by soil depth were created. Results of soil moisture volume by soil mixture ratio in the 15cm soil thickness showed that the difference was significance between simple soil and mixture soil treatment, however, the statistical significance was not recognized according to soil mixture ratio. In case of 25cm soil thickness, soil moisture volume by soil mixture ratio was more higher 7Vol.%~10Vol.% in the mixture soil than simple soil treatment. In terms of districts planted ground cover plants, soil volume moisture differed among plants in the order Zoysia japonica 17.74 Vol.%$34.86^{\circ}C$, district non-planted $27.49^{\circ}C$, Sedum sarmentosum $25.11^{\circ}C$, Chrysanthemum zawadskii $23.08^{\circ}C$, Zoysia japonica $24.45^{\circ}C$ respectively So, concrete surface showed more higher $5^{\circ}C{\sim}15^{\circ}C$ than other things among the all the time. Result of inner temperature of the architecture and soil, it was measured inner of architecture $25.69^{\circ}C$, inner district non-planted $24.29^{\circ}C$, Chrysanthemum zawadskii $23.90^{\circ}C$, Zoysia japonica $24.02^{\circ}C$, Sedum sarmentosum $25.13^{\circ}C$, respectively.

질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과 (Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers)

  • 홍성창;김민욱;김진호
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

표층처리를 위한 현장의 강도적용에 관한 연구 (A Study on Applicability of Soil Strength for Surface Treatment)

  • 양태선;김병호
    • 한국지반신소재학회논문집
    • /
    • 제4권3호
    • /
    • pp.45-52
    • /
    • 2005
  • 대부분의 항만구조물은 초연약 지반상에 축조되고 있으며 도로나 건물부지에는 지반개량이 필요하다. 이 논문에서는 여러 사례연구를 통하여 표층처리후의 복토사례에 대하여 몇가지 고려사항을 언급하였다. 또한, 모래나 산토를 이용한 복토공법에 대하여 강도적용이 고려되었다. 국내 복토공법 토목섬유 인장강도는 15t/m, 복토두께는 1.6~3.1m, 점토지반의 표층강도는 $0.2{\sim}1.2t/m^2$이 대표적이다. 표층처리공 시공시 발생되는 지반교란, 점토유출, 장비전도 등의 사고를 최소화하기 위한 연구가 필요하다.

  • PDF

플라즈마처리가 폴리에스테르 직물의 오염제거성에 미치는 연구 (Influence of Plasma Treatment on The Soil Release Properties of Polyester Fabrics)

  • Kwon, Young-Ah
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.434-435
    • /
    • 2003
  • Physicochemical properties of a polymer surface significantly affect adhesion, wetting, and dyeing properties. In recent years, low temperature plasma technology has been widely used for surface modification of polymers. Surface fluorination by low temperature plasma treatment has been employed to improve the water and oily repellency of textile fabrics. However, very few results have been reported on soil release properties of the oxygen plasma treated textile fabrics. (omitted)

  • PDF

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

슬러지를 이용한 인공토양 생산 및 농자재화 가능성 연구 (Feasibility Study of Artificial Soil Production with Sludge and Utilization for Agriculture)

  • 김선주;윤춘경;이남출
    • 한국농공학회지
    • /
    • 제39권5호
    • /
    • pp.64-70
    • /
    • 1997
  • Sludge is generated in the process of water and wastewater treatment, and it has been causing various problems environmentally and economically. The firing technology in pottery industry was applied to the sludge treatment, and the final product was called artificial soil. For the production of artificial soil, lime and chabazite was used as additive, and the mixed material was thermally treated in the firing kiln at $300^{\circ}$ temperature for about 15 minutes. The physico-chemical characteristics of the artificial soil was analyzed and it showed that the artificial soil could be used as a soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial soil were lower than those in the soil quality standard for farmland. It was high in permeability, total nitrogen and total phosphorous concentrations and surface area of the artificial soil compared to the common field soil. Preliminary cost analysis showed that the sludge treatment cost for artificial soil was less than the disposal cost in the current landfill disposal method. This study illustrated that the artificial soil production process can be a feasible alternative for sludge treatment, and produced artificial soil may he applied to farmland without causing significant adverse effect. Further study is recommended for practical application of the system and verification of the longterm effect of the artificial soil on farmland.

  • PDF