• Title/Summary/Keyword: soil-borne diseases

Search Result 57, Processing Time 0.04 seconds

Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng (인삼 뿌리썩음병 발병에 미치는 토양전염성병원균과 토양환경요인)

  • Shin, Ji-Hoon;Yun, Byung-Dae;Kim, Hye-Jin;Kim, Si-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • Disease is the major problem in ginseng cultivation from seed stratification, soil preparation prior to planting, right through to drying of the roots. There are many soil-borne disease pathogen in rhizosphere soil environment, furthermore occurrence of diseases by a diverse group of fungi and related organisms are closely related to various soil condition. Observable symptoms for soil-borne diseases include wilting, leaf death and leaf fall, death of branches and limbs and in severe cases death of the whole plant. The fungus Cylindrocarpon destructans is the cause of root rot characterized by a decay of the true root system in many ginseng production areas in Korea. Some pathogens are generally confined to the juvenile roots whilst others are capable of attacking older parts of the root system. However, the relation between the soil environmental characteristics and ginseng root rot by soil-borne disease pathogen is not clearly identified in ginseng field. In this paper, we reviewed soil-borne plant pathogen causing root rot disease of ginseng with respect to soil environment.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Correlation between the Dieback Ratio and Cultivation Environment for Apple Orchards Infected by Soil-Borne Diseases in Chungbuk Province (충북에서 사과 주요 토양병에 의한 고사율과 재배환경과의 상관관계)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Kim, Ik-Jei;Nam, Sang-Young;Hong, Eui Yon;Kim, Daeil;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The previous study showed that die-back of apple trees caused by soil-borne diseases was significantly high in the apple orchards in Chungbuk province. The correlation between dieback ratio and cultivation environment in apple orchards infected by soil-borne diseases was investigated in this study. The dieback ratio of five orchards diseased by violet root rot and five places infected by white root rot showed significantly positive correlation with Ca content and available $P_2O_5$ content in soil, respectively. Whereas, the dieback ratio of fourteen orchards diseased by Phytophthora root rot was not significant. Subgrouping of cultivation environment analysis showed that the slope degree of orchard and the number of fruit setting also affected the dieback ratio caused by violet root rot and Ca content in soil also affected the dieback ratio caused by white root rot. It showed that the slope degree, soil texture, Mg and Ca content affected the dieback ratio caused by Phytophthora root rot. These results can be applied to reduce die-back ratio by the modification cultivation environment for each soil-borne disease.

Co-treatment with Origanum Oil and Thyme Oil Vapours Synergistically Limits the Growth of Soil-borne Pathogens Causing Strawberry Diseases

  • Jong Hyup, Park;Min Geun, Song;Sang Woo, Lee;Sung Hwan, Choi;Jeum Kyu, Hong
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.673-678
    • /
    • 2022
  • Vapours from origanum oil (O) and thyme oil (T) were applied to the four soil-borne strawberry pathogens Fusarium oxysporum f. sp. fragariae, Colletotrichum fructicola, Lasiodiplodia theobromae, and Phytophthora cactorum, causing Fusarium wilt, anthracnose, dieback, and Phytophthora rot, respectively. Increasing T vapour doses in the presence of O vapour strongly inhibited mycelial growths of the four pathogens and vice versa. When mycelia of F. oxysporum f. sp. fragariae and P. cactorum exposed to the combined O + T vapours were transferred to the fresh media, mycelial growth was restored, indicating fungistasis by vapours. However, the mycelial growth of C. fructicola and L. theobromae exposed to the combined O + T vapours have been slightly retarded in the fresh media. Prolonged exposure of strawberry pathogens to O + T vapours in soil environments may be suggested as an alternative method for eco-friendly disease management.

Effect on Colony Growth Inhibition of Soil-Borne Fungal Pathogens by Available Chlorine Content in Sodium Hypochlorite

  • Lee, Sung-Hee;Shin, Hyunman;Kim, Ju-Hyoung;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.156-163
    • /
    • 2019
  • Our study investigated the available chlorine content, contact time and difference among strains of each pathogen for sodium hypochlorite (NaOCl) to control chemically against soil-borne fungal pathogens, such as Phytophthora rot by Phytophthora cactorum, violet root rot by Helicobasidium mompa, and white root rot by Rosellinia necatrix, causing die-back symptom on apple trees. As a result, the colony growth of Phytophthora cactorum was inhibited completely by soaking over 5 s in 31.25 ml/l available chlorine content of NaOCl. Those of H. mompa and R. necatrix were inhibited entirely by soaking over 160 s in 62.5 and 125 ml/l available chlorine content in NaOCl, respectively. Also, inhibition effect on available chlorine in NaOCl among strains of each soil-borne pathogen showed no significant difference and was similar to or better than that of fungicides.

Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases

  • Kim, Dal-Soo;Rae, Cheol-Yong;Chun, Sam-Jae;Kim, Do-Hyung;Choi, Sung-Won;Choi, Kee-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.328-333
    • /
    • 2005
  • Paenibacillus elgii SD17 (KCTC $10016BP^T$=NBRC $100335^T$) was recently reported as a new species. Based on its inhibitory activity to Thanatephorus cucumeris AG1-1, strain SD17 was further evaluated for its potential as a biocontrol agent against soil-borne diseases of turf grasses in Korea. P. elgii SD17 showed a broad spectrum of antimicrobial activity in vitro test and suppressed development of turf grass diseases; Pythium blight caused by Pythium aphanidermatum and brown patch caused by T. cucumeris AG1-1 on creeping bentgrass (Agrostis palustris) in the growth chamber tests. Under a condition for massive culture in a 5,000 L fermenter, P. elgii SD17 reached $6.4{\times}10^8$ spores/ml that resulted in approximately $1.0{\times}10^7$ cfu/g when formulated into a granule formulation (GR) using the whole culture broth instead of water. Using the GR formulation, biocontrol activity of P. elgii SD17 was confirmed. In the growth chamber tests, the GR formulation was effective against brown patch and Pythium blight with similar level of disease severity compared to each of the standard fungicides at the application rates of 10 g/$m^2$ or above. In the field tests, compared to each untreated control, the GR formulation also effectively controlled Pythium blight, brown patch and large patch at all the application rates of 5, 10 and 20 g/$m^2$, respectively, without significant response by the application rates. However its performance was inferior to each of the standard chemical fungicides. Based on these results, we consider this GR formulation of P. elgii SD17 as an effective biocontol agent to suppress Pythium blight, brown patch and large patch of turf grasses in Korea.

Infection Mechanism of Pathogenic Exduate by Soil-Borne Fungal Pathogens : A Review

  • Lim, You-Jin;Kim, Hye-Jin;Song, Jin-A;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.622-627
    • /
    • 2012
  • The processes to determine the composition, dynamics, and activity of infection mechanisms by the rhizosphere microflora have attracted the interest of scientists from multiple disciplines although considerable progress of the infection pathways and plant-pathogen interactions by soil borne fungal pathogens have been made. Soilborne pathogens are confined within a three-dimensional matrix of mineral soil particles, pores, organic matter in various stages of decomposition and a biological component. Among the physical and chemical properties of soils soil texture and matric water potential may be the two most important factors that determine spread exudates by soil borne fungal pathogens, based on the size of the soil pores. Pathogenic invasion of plant roots involves complex molecular mechanisms which occur in the diffuse interface between the root and the soil created by root exudates. The initial infection by soilborne pathogens can be caused by enzymes which breakdown cell wall layers to penetrate the plant cell wall for the fungus. However, the fate and mobility of the exudates are less well understood. Therefore, it needs to develop methods to control disease caused by enzymes produced by the soilborne pathogens by verifying many other possible pathways and mechanisms of infection processes occurring in soils.

Effects of Solar Heating for Control of Pink Root and Other Soil-borne Diseases of Onions

  • Lee, Chan-Jung;Lee, Jong-Tae;Moon, Jin-Seong;Ha, In-Jong;Kim, Hee-Dae;Kim, Woo-Il;Cheon, Mi-Geon
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.295-299
    • /
    • 2007
  • These experiments were carried out to examine efficacy of soil solarization for control of pink root disease by means of mulching with transparent polyethylene sheets in the hot season. The effects of soil solarization on incidence of pink-root disease caused by Pyrenochaeta terrestris and on onion growth and on populations of soil fungi were investigated. Solarization was dramatically effective in reducing pink root incidence in onion seedling and harvested onion bulb. A 30-day and 40-day solarization treatment significantly improved seedling survival and increased yield of 'Changnyeong-deago' onion while decreasing incidence of pink root. Populations of soil fungi from fields planted to onion were assayed on selective media. Solarization treatment was effective in reducing populations of P. terrestris, Pythium spp., and Rhizoctonia sp. in soil. Increase of yield of onion bulbs was associated with control of soil-borne pathogenic fungi. Soil solarization had beneficial effects on yield, bulb diameter, or incidence of pink root.

Pathological Interrelations of Soil-Borne Diseases in Cucurbits Caused by Fusarium Species and Meloidogyne incognita

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.410-423
    • /
    • 2017
  • Pathological interrelations of two soil-borne diseases in cucurbits (watermelon, oriental melon, shintosa and cucumber) caused by Fusarium isolates (FI) and the root-knot nematode (RKN), Meloidogyne incognita were characterized by the fusarium disease severity index (DI), RKN gall index (GI) and eggmass index (EI) in inoculation tests using FI and RKN. Virulence of FI as determined by DI at 4 weeks after inoculation was mostly in the higher order of Fusarium proliferatum F6, F5 and Fusarium oxysporum f. sp. melonis or Fusarium oxysporum f. sp. niveum with no significant differential interactions among the cucurbits and RKN co-infection. Significant increases of DI due to RKN coinfection were noticed in watermelon and oriental melon infected with F. proliferatum isolates, suggesting the DI increase due to RKN coinfection may depend upon the virulence of FI relative to aggressiveness of RKN on the cucurbits. For the coinfection of FI and RKN, GI and EI were mostly reduced logarithmically with the increase of DI, largely more in EI than GI, in all cucurbits except for shintosa. Microscopic examination of the root tissues showed histopathological features characteristic to infection types; formation of fungal hyphae and/or spores and plant defense structures (tyloses and mucilage) in variable degrees and formation of giant cells at variable developmental stages and with variable cytoplasmic depletion or degeneration which were visualized in relations with the values of DI, GI and EI. These findings will be helpful to develop control strategies of the soil-borne disease complex based on their pathological characteristics.