• Title/Summary/Keyword: solid phase crystallization

Search Result 127, Processing Time 0.085 seconds

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.19 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

Crystallization Mechanisms of Joule-Heating-Induced Crystallization

  • Park, Doo-Jung;Ro, Jae-Sang
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.76-79
    • /
    • 2009
  • In Joule-heating-induced crystallization, solid-to-solid or liquid-to-solid phase transformation could occur. It was found that novel physical phenomena that randomly nucleated liquid seeds, followed by rapid solidification in an amorphous matrix, during the Joule-heating-up period play an important role especially in liquid-to-solid transformation. Under some processing conditions, super-grains sized 6-8 ${\um}m$ were produced by the lateral growth from the initial seeds, without any artificially control.

Research of liquid-solid two phase flow in centrifugal pump with crystallization phenomenon

  • Liu, Dong;Wang, Ya-Yun;Wang, Ying-Ze;Wang, Chun-Lin;Yang, Min-Guan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • Particle Image Velocimetry combined with developed image processing method is adopted to study the liquid-solid two phase flow in the centrifugal pump impeller with crystallization phenomenon. The tracer particle is used to follow the liquid phase, which has the diameter between 8 to $12{\mu}m$. The crystal particle precipitates from the sodium sulfate solution does change the wavelength of the laser, and which has great laser scattering characteristics. The diameter of the crystal particle is larger than $20{\mu}m$. Through calculating the diameter of the particles in the image, the tracer particle and the crystal particle can be distinguished. By analyzing the experimental result, the following conclusion has been obtained. During the delay period, there is not any crystal particle and the pump performance has not been changed. As the crystallization process begins, the crystal nuclei appears from the supersaturation solution and grows larger with temperature decreasing, which has the tendency of moving towards the pressure side. The characteristics of liquid-solid two phase flow with crystallization phenomenon in the pump are obtained according to analysis of experimental results, and some guiding advices are presented to mitigate the crystallization phenomenon in pump impeller.

Solid Phase Crystallization Kinetics of Amorphous Silicon at High Temperatures

  • Hong, Won-Eui;Kim, Bo-Kyung;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.48-50
    • /
    • 2008
  • Solid phase crystallization (SPC) of amorphous silicon is usually conducted at around $600^{\circ}C$ since it is used in the application of flat panel display using thermally susceptible glass substrate. In this study we conducted SPC experiments at temperatures higher than $600^{\circ}C$ using silicon wafers. Crystallization rate becomes dramatically rapid at higher temperatures since SPC kinetics is controlled by nucleation with high value of activation energy. We report SPC kinetics of high temperatures compared to that of low temperatures.

Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy (라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동)

  • Hong, Won-Eui;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

Schottky barrier Thin-Film-Transistors crystallized by Excimer laser annealing and solid phase crystallization method (ELA 결정화와 SPC 결정화를 이용한 쇼트키 장벽 다결정 실리콘 박막 트랜지스터)

  • Shin, Jin-Wook;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.129-130
    • /
    • 2008
  • Polycrystalline silicon (poly-Si) Schottky barrier thin film transistors (SB-TFT) are fabricated by erbium silicided source/drain for n-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method. The fabricated poly-Si SB-TFTs have a large on/off current ratio with a low leakage current. Moreover, the electrical characteristics of poly-Si SB TFTs are significantly improved by the additional forming gas annealing in 2 % $H_2/N_2$, because the interface trap states at the poly-Si grain boundaries and at the gate oxide/poly-Si channel decreased.

  • PDF

Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy (단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

New Solid-phase Crystallization of Amorphous Silicon by Selective Area Heating

  • Kim, Do-Kyung;Jeong, Woong-Hee;Bae, Jung-Hyeon;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.117-120
    • /
    • 2009
  • A new crystallization method for amorphous silicon, called selective area heating (SAH), was proposed. The purpose of SAH is to improve the reliability of amorphous silicon films with extremely low thermal budgets to the glass substrate. The crystallization time shortened from that of the conventional solid-phase crystallization method. An isolated thin heater for SAH was fabricated on a quartz substrate with a Pt layer. To investigate the crystalline properties, Raman scattering spectra were used. The crystalline transverse optic phonon peak was at about 519 $cm^{-1}$, which shows that the films were crystallized. The effect of the crystallization time on the varying thickness of the $SiO_2$ films was investigated. The crystallization area in the 400nm-thick $SiO_2$ film was larger than those of the $SiO_2$ films with other thicknesses after SAH at 16 W for 2 min. The results show that a $SiO_2$ capping layer acts as storage layer for thermal energy. SAH is thus suggested as a new crystallization method for large-area electronic device applications.

Solid Phase Crystallization of LPCVD Amorphous Silicon Thin Films by Alternating Magnetic Flux (교번자속인가에 의한 비정질 실리콘 박막의 결정화거동에 대한 연구)

  • 송아론;박상진;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.459-462
    • /
    • 2000
  • A new method for the fabrication of poly-Si films is reported using by alternating magnetic flux crystallization (AMFC) of LPCVD a-Si films. In this work we have studied the crystallization of LPCVD a-Si films by alternating magnetic flux. A-Si films were 1200$\AA$-thick deposited at 48$0^{\circ}C$ at a total pressure of 0.25Torr using Si$_2$H$_{6}$/H$_2$. After this step, these a-Si films were thermally annealed by Alternating Magnetic Flux at 43$0^{\circ}C$ for 1hours. The annealed films were characterized using X-ray diffraction (XRD), Raman Spectra, Atomic Force Microscopy(AFM). Both alternating magnetic flux crystallization and solid phase crystallization were investigated to compare enhanced crystallization a-Si. We have found that the low temperature crystallization method at 43$0^{\circ}C$ by alternating magnetic flux.x.

  • PDF

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF