• Title/Summary/Keyword: solution of difference equation

Search Result 315, Processing Time 0.03 seconds

A NEW WAY TO FIND THE CONTROLLING FACTOR OF THE SOLUTION TO A DIFFERENCE EQUATION

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.833-846
    • /
    • 1999
  • In this paper, we will study the relationship between the controlling factor of the solution to a difference equation and the solution of the corresponding differential equation. Many times the controlling factors are the same. But even the controlling factor of the two solutions may be different, we will discover a way to compute, for first order non-linear equations, the controlling factor of the solution to the difference equation using the solution of the differential equation.

  • PDF

EIGENVALUE COMPARISON FOR THE DISCRETE (3, 3) CONJUGATE BOUNDARY VALUE PROBLEM

  • Jun Ji;Bo Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.925-935
    • /
    • 2023
  • In this paper, we consider a boundary value problem for a sixth order difference equation. We prove the monotone behavior of the eigenvalue of the problem as the coefficients in the difference equation change values and the existence of a positive solution for a class of problems.

ON POSITIVE SOLUTIONS OF A RECIPROCAL DIFFERENCE EQUATION WITH MINIMUM

  • QINAR CENGIZ;STEVIC STEVO;YALQINKAYA IBRAHIM
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper we consider positive solutions of the following difference equation $$x_{n+l}\;=\;min[{\frac{A}{x_{n}},{\frac{B}{x_{n-2}}}],\;A,B\;>\;0$$. We prove that every positive solution is eventually periodic. Also, we present here some results concerning positive solutions of the difference equation $$x_{n+l}\;=\;min[{\frac{A}{x_{n}x_{n-1}{\cdots}x_{n-k}},{\frac{B}{x_{n-(k+2)}{\cdots}x_{n-(2k+2)}}],\;A,B\;>\;0$$.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

A FINITE DIFFERENCE APPROXIMATION OF A SINGULAR BOUNDARY VALUE PROBLEM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.473-484
    • /
    • 1998
  • We consider a finite difference approximation to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is proved that the rate of convergence is $O(h^2)$. To obtain the solution of the finite difference equation, an iterative scheme converging monotonically to the solution of the finite difference equation is introduced. And the numerical experiment of this method is given.

  • PDF

GLOBAL ASYMPTOTIC STABILITY OF A SECOND ORDER RATIONAL DIFFERENCE EQUATION

  • Abo-Zeid, R.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.797-804
    • /
    • 2010
  • The aim of this paper is to investigate the global stability, periodic nature, oscillation and the boundedness of solutions of the difference equation $x_{n+1}\;=\;\frac{A+Bx_{n-1}}{C+Dx_n^2}$, n = 0, 1, 2, ... where A, B are nonnegative real numbers and C, D > 0.

A FINITE DIFFERENCE SCHEME FOR RLW-BURGERS EQUATION

  • Zhao, Xiaohong;Li, Desheng;Shi, Deming
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.573-581
    • /
    • 2008
  • In this paper, a finite difference method for a Cauchy problem of RLW-Burgers equation was considered. Although the equation is not energy conservation, we have given its the energy conservative finite difference scheme with condition. Convergence and stability of the difference solution were proved. Numerical results demonstrate that the method is efficient and reliable.

  • PDF