• Title/Summary/Keyword: solvent effect

Search Result 1,835, Processing Time 0.027 seconds

Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions

  • Lim, Gui Taek;Lee, Yeong Ho;Ryu, Zoon Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.615-621
    • /
    • 2013
  • Solvolyses of isobutyl chloroformate (4) in 43 binary solvent mixtures including highly aqueous media, water, $D_2O$, $CH_3OD$, 2,2,2-trifluoroethanol (TFE) as well as aqueous 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) solvents were performed at $45^{\circ}C$, in order to further investigate the recent results of D'Souza, M. $J^1$. et al.; solvolyses of 4 are found to be consistent with the proposed mechanism ($Ad_E$). The variety of solvent systems was extended to comprise highly ionizing power solvent media ($Y_{Cl}$ > 2.7 excepted for aqueous fluorinated solvents and pure TFE solvent) to investigate whether a mechanistic change occurs as solvent compositions are varied. However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-$H_2O$ and HFIP-$H_2O$) and/or having $Y_{Cl}$ > 2.7 solvent systems, the solvent effect on reactivity for those of 4 are evaluated by the multiple regression analysis as competition with $S_N2$ - type mechanism. And in pure TFE and 97 w/w % HFIP solvents with high $Y_{Cl}$ and weak $N_T$, these solvolyses are understood as reactions which proceed through an ionization ($S_N1$) pathway.

The Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids II: The Effect of Solvent Structure

  • Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1207-1210
    • /
    • 2003
  • The effect of solvent structure on the slope in the plot of ln K vs. solute carbon number was examined. It was found that the free energy of methylene group transfer from the gas phase into a solvent was always negative and that the absolute magnitude of interaction free energy between the methylene group and the solvent was always larger than the absolute magnitude of cavity formation free energy of the methylene group in the solvent. Thus, the slope in the plot of ln K vs. solute carbon number was always positive and its value decreases with increase of solvent polarity since the cavity formation energy of the CH₂ unit increases with increase of solvent polarity while the dispersive interaction energy of the CH₂ unit is virtually invariant. We also examined the effect of sequential addition of CH₂ unit to a solvent molecule upon ln K for three homologous series of solvents: n-alkanes, n-alcohols, and n-nitriles. Characteristic trends in the plots of ln K vs. solvent carbon number were observed for individual solvent groups. A decrease of ln K with solvent carbon number was observed for n-alkanes. An abrupt increase in ln K followed by levelling off was observed for n-alcohols while a final slight decrease in ln K after an abrupt increase followed by rapid levelling off was noted for n-nitriles. All of theses phenomena were found related to variation in cavity formation energy. It was clearly shown that a structural change of a polar solvent by sequential addition of CH₂ units causes an abrupt polarity decrease initially, then gradual levelling off, and finally, conversion to a virtually nonpolar solvent if enough CH₂ units are added.

Adhesion Strength of Amorphous Polymer Interfaces by Solvent Welding (Solvent 용접에 의한 무정형 고분자 계면의 접착강도 변화에 관한 연구)

  • 정연호;강두환;강호종
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • Autoadhesion strength of PS/PS Interfaces in solvent welding was determined as a function of processing conditions by butt joint test. It was verified that the chain mobility and surface roughness at PS/PS interface were enhanced by the applied solvent having a similar solubility parameter as PS and resulted in the dramatic improvement of autoadhesion strength at PS/PS interface. It was found that the mechanism of solvent welding is dependent upon the chain mobility due to the diffusion of solvent to PS interface and the contact area at interface. When the welding temperature is lower than the boiling point of applied solvent, the effect of chain mobility on autoadhesion strength was dominated, while contact area took more important role when welding temperature is above the boiling point of solvent. Autoadhesion strength increased with increasing contact time and contact temperature but :he effect of solvent on autoadhesion strength became smaller.

  • PDF

The Effect of Solvent on the $\alpha$-Effect(3): Nucleophilic Substitution Reactions of Aryl Acetates in $MeCN-H_2O$ Mixtures of Varying Compositions

  • Um Ik-Hwan;Hahn Gee-Jung;Lee Gwang-Ju;Kwon Dong-Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.642-647
    • /
    • 1992
  • Second-order rate constants have been measured spectrophotometrically for the reactions of substituted phenyl acetates with butane-2,3-dione monoximate and p-chlorophenoxide anions in MeCN-H$_2$O mixtures of varying compositions. The reaction rate, unexpectedly, decreased remarkably upon initial additions of MeCN to H$_2$O up to 30-40 mole ${\%}$ MeCN, and followed by a gradual increase upon further additions of MeCN. The change in solvent composition also influenced the magnitude of the ${\alpha}$-effect, i.e., the ${\alpha}$-effect increased as the mole ${\%}$ MeCN increased. The solvent dependent ${\alpha}$-effect for the present system appears to indicate that the differential solvation between the ${\alpha}$-effect nucleophile and the corresponding normal nucleophile is not solely responsible but the difference in the transition-state stabilization is also responsible for the ${\alpha}$ -effect in organic solvent-rich region.

Solvent Effect on Preservation and Inversion of the Chirality in the Processes of Nucleophilic Substitution Reaction of Organic Compound bearing Optical Activity Resolution (광학활성 분리능을 갖는 유기화합물의 친핵성치환반응에서 키랄성의 유지 및 반전에 미치는 용매효과)

  • Lee, Yong-Hee;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.299-303
    • /
    • 2004
  • A systematic investigation for the reactivity and solvent effect was studied on the reaction of optical resolving agents with the optically active assistant compounds. The reaction rate constants of the nucleophillic substitution reactions were determined by means of conductometric method The linear solvent energy relationship based on the solvent parameters and the thermodynamic parameters was discussed on the reactions of various physiological active compounds and optical resolving agents The reaction mechanism was discussed from the kinetic results compared with the optical purity.

  • PDF

A Study of Effects with Using After Mixing Ample and Permanent Solvent During Permanent Wave Operating, of Dyod Hairs (염색모발에서 퍼머시술시 퍼머 1제와 앰플의 혼합사용에 대한 효과)

  • Lee, Eun-Kyeung;Choi, Jeung-Sook
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.3 no.3 s.3
    • /
    • pp.56-63
    • /
    • 2005
  • In the study of permanent waving method after mixing ample and permanent wave solvent in permanent wave the dyed humans hair are as follows; First, Permanent waving method after mixing ample and permanent wave solvent is that the better effective way in permanent wave the dyed humans hair because permanent waving cycle is constant and hair cuticle is glossy. Second, This study is not interpret in permanent wave dyed humans hair that tensile strength is effect of permanent waving method after mixing ample and permanent wave solvent. A extension degree is effect of permanent waving method after mixing ample and permanent wave solvent use indifferent ample treatment method. Third, Hair cuticle damages are a little permanent waving method after mixing ample and permanent wave solvent in permanent wave dyed humans hair.

  • PDF

Effect of Solvent Mixture Ratio on Rheology Property of Slurry and Thickness Control of Ceramic Green Sheets (유기 용매 혼합비에 따른 슬러리의 유동 특성과 세라믹 그린 쉬트의 두께 제어)

  • Kim, Jun-Young;Kim, Seung-Taek;Park, Jong-Chul;Yoo, Myong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • The effect of organic solvent mixture ratio on the rheology property of slurry and thickness control of ceramic green sheet was investigated. For selecting a suitable dispersant multiple light scattering method was used to evaluate the particle migration velocity and variation of clarification layer thickness. Using the selected dispersant the dispersion property of solution according to solvent mixture ratio was investigated. Binder and plasticizers were added to formulate slurries and their viscosity was evaluated according to solvent mixture ratio. Ceramic green sheets with average thickness of 30, 50 urn were fabricated via tape casting and their thickness tolerances measured. As a result according to solvent mixture ratio the solution and slurry properties varied and for the mixture ratio of ethanol/toluene of 80/20 the ceramic green sheet with the lowest thickness tolerance was obtained.

Solvation in Mixed Solvent (III). Solvatochromic Analysis for the Solvent Effect of Binary Mixed Solvent (혼합용매에서의 용매화 (제3보). 이성분 혼합용매 중에서 용매효과에 대한 분광용매화 분석)

  • Lee, Ik-Choon;La, Sang-Mu;Lee, Bon-Su;Sohn, Se-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.210-216
    • /
    • 1984
  • Solvatochromic comparison methods were applied to determine Taft's solvent parameters, ${\pi}^{\ast}$(solvent polarity-polarizability), ${\alpha}$(solvent hydrogen bond donor acidity) and ${\beta}$ (solvent hydrogen bond acceptor basicity) for MeOH-MeCN solvent mixtures. Swain's solvent parameters A(anion solvation scale) and B(cation solvation scale) were also determined by least square fitting of kinetic data in the same binary solvent mixtures. It was found that: (i)${\beta}$ depends on the basicity of the solvent and increases with the MeOH content owing to the increase in polymeric structure of methanol; (ii) ${\pi}^{\ast}$depends on the dipole moment of the solvent and increases with the MeCN content of the solvent; (iii) ${\alpha}$ increases rapidly with the MeOH content as the hydrogen bond donor acidity of the solvent mixtures increases. Taft's reaction constants a and s and Swain's reaction constants a and b were determined for the reactions reported from our laboratory previously using solvent parameters determined in this work. No meaningful inter-relationship was found between the two set of reaction parameters, but a good linear correlation was found between the ratios a/s and a/b. Solvent effect on the reaction mechanism, substituent effect and leaving group ability were examined in the light of these reaction constants ratios.

  • PDF