• Title/Summary/Keyword: somatic cells

Search Result 508, Processing Time 0.025 seconds

The Effects of the Somatic Cell Count on Yield, Composition and Coagulating Properties of Mediterranean Buffalo Milk

  • Tripaldi, C.;Terramoccia, S.;Bartocci, S.;Angelucci, M.;Danese, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.738-742
    • /
    • 2003
  • The monitoring was carried out for one year on 20 farms of Mediterranean buffalo situated in central Italy. The milk yield, the somatic cell count, the coagulating properties and some components were determined. The average value of somatic cells was $21.28n{\times}10^3/ml$. Milk production decreased when somatic cell numbers increased. The rennet clotting time increased significantly when somatic cells were higher than $300.00n{\times}10^3/ml$, the curd firming time was significantly higher when somatic cells were more than $1,000.00n{\times}10^3/ml$ and the curd firmness increased up to $200.00n{\times}10^3$/ml, then gradually decreased. Protein and casein decreased when somatic cells increased and the same trend was shown by casein/protein ratio. Both for these components and the coagulating properties the threshold limit of somatic cells to obtain better results was $200.00n{\times}10^3/ml$. The somatic cell number did not show a trend which was strictly influenced by the lactation stage, contrary to what happened in the other species.

Haploidy of somatic cells in mouse oocyte using somatic cell nuclear transfer

  • Yeonmi Lee;Eunju Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-217
    • /
    • 2022
  • Haploidization in somatic cells is the process of reducing the diploid somatic chromosomes to haploid. Several studies have attempted somatic haploidization using oocytes in mice and humans. Some researchers showed partial somatic haploidization, but none observed embryo development. Our study attempted somatic haploidization using the modified somatic nuclear transfer (SCNT) protocol with various combinations of chemicals or proteins in mice. This study induced the proper segregation of somatic homologous chromosomes and full embryo development in vitro. Furthermore, somatic haploid embryos established embryonic stem cells and produced live births. The current review summarizes this recent study on the success of somatic haploidization and provides an overview of other related studies on somatic haploidization.

Functions of somatic cells for spermatogenesis in stallions

  • Muhammad, Shakeel;Minjung, Yoon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.654-670
    • /
    • 2022
  • Spermatogenesis and testis development are highly structured physiological processes responsible for post-pubertal fertility in stallions. Spermatogenesis comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell degeneration is a continuous process, its effects are more pronounced during spermatocytogenesis and meiosis. The productivity and efficiency of spermatogenesis are directly linked to pubertal development, degenerated germ cell populations, aging, nutrition, and season of the year in stallions. The multiplex interplay of germ cells with somatic cells, endocrine and paracrine factors, growth factors, and signaling molecules contributes to the regulation of spermatogenesis. A cell-tocell communication within the testes of these factors is a fundamental requirement of normal spermatogenesis. A noteworthy development has been made recently on discovering the effects of different somatic cells including Leydig, Sertoli, and peritubular myoid cells on manipulation the fate of spermatogonial stem cells. In this review, we discuss the self-renewal, differentiation, and apoptotic roles of somatic cells and the relationship between somatic and germ cells during normal spermatogenesis. We also summarize the roles of different growth factors, their paracrine/endocrine/autocrine pathways, and the different cytokines associated with spermatogenesis. Furthermore, we highlight important matters for further studies on the regulation of spermatogenesis. This review presents an insight into the mechanism of spermatogenesis, and helpful in developing better understanding of the functions of somatic cells, particularly in stallions and would offer new research goals for developing curative techniques to address infertility/subfertility in stallions.

Changes of testosterone production in adult mouse testis and serum after wholebody irradiation

  • Chun, Ki-Jung;Kim, Jihyang;Kim, Woo-Jung;Kim, Jin-Kyu;Kim, Bonghee;Yoon, Yong-Dal
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.178-179
    • /
    • 2003
  • The testis is composed of four cell types like supporting cells, steroid-producing cells, connective tissue cells and germ cells. Apoptosis is a common phenomenon during spormatogenesis. Apoptosis of germ cells can also be induced by exposure to radiation. Previous studies have shown that most types of germ cells are rather radiosensitive while somatic cells in testis are much more radio-resistant. The somatic cells in testis are divided to mainly Sertoli and Leydig cells. Though somatic cells are more radio-resistant than germ cells, radiation can induce the impairment of their function. This damaged function of somatic cells may accelerates degeneration of germ cell indirectly. Tn the present study, we have examined the apoptotic effect of mouse testis and irradiation effect of steroidogenesis of Leydig cells after irradiation.

  • PDF

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF

Effects of Ascorbate on Somatic Embryogenesis in Carrot Cell Cultures (당근 세포배양으로부터 체세포배 발생에 미치는 아스콜빈산의 효과)

  • 소웅영;김이엽;조덕이
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.143-148
    • /
    • 1999
  • This study was conducted to elucidate the effects of ascorbic acid and dehydroascorbic acid on somatic embryogenesis from the cultured cells of carrot. Ascorbic acid in culture medium merely stimulated the proliferation of non-embryogenic cells but dehydroascorbic acid in medium induced embryogenic cells from non-embryogenic cells accompanying the inhibition of cell proliferation. Ascorbic acid in medium inhibited somatic embryogenesis from embryogenic cells while dehydroascorbic acid in medium enhanced somatic embryogenesis from the cells as well as non-embryogenic cells. This enhancement was limited to globular embryos and the maturation to cotyledonary embryos was inhibited by dehydroascorbic acid treatment. From the above results it is suggested that carrot callus cultures on medium containing dehydroascorbic acid could quickly induce embryogenic cells. In addition after brief culture of embryogenic cells on development medium containing dehydroascorbic there by acid the subculture of the cells to MS basal medium resulted in the high frequency production of somatic embryos.

  • PDF

Brain Somatic Mutations in Epileptic Disorders

  • Koh, Hyun Yong;Lee, Jeong Ho
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.881-888
    • /
    • 2018
  • During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.

Optimization of Procedure for Efficient Gene Transfer into Porcine Somatic Cells with Lipofection

  • Kim, D.Y.;McElroy, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.648-656
    • /
    • 2008
  • The objective of this study was to establish conditions for transfection of a foreign gene into somatic cells using cationic lipid reagents and to evaluate the effects of transfection on in vitro development of somatic cell nuclear transfer (SCNT) embryos. Green fluorescent protein (GFP) gene was used as a foreign gene and a non-transfected somatic cell was utilized as a control karyoplast. Monolayers of porcine cells were established and subsequently transfected with a GFP-expressing gene (pEGFP-N1) using three types of transfection reagents (LipofectAMINE PLUS, FuGENE 6 or ExGen500). Donor cells used for SCNT included transfected fetal or adult fibroblasts and oviduct epithelial cells, either serum-fed or serum-starved. Oocytes matured in vitro for 42 h were reconstructed with either transfected or non-transfected porcine somatic cells by electric fusion and activation using a single DC pulse of 1.8 kV/cm for $30{\mu}s$ in $Ca^{2+}$ and $Mg^{2+}-containing$ 0.26 M mannitol solution. Reconstructed oocytes were subsequently cultured in NCSU-23 medium for 168 h and the developmental competence and cell number in blastocyst were compared. There were no significant differences (P>0.05) in fusion, cleavage rates or development to the blastocyst stage between non-transfected, transfected, serum-fed and serum-starved cells. However, the rates of GFP-expressing blastocysts were higher in the FuGENE 6 group (71.4%) among transfection reagents and in the fetal fibroblasts group (70.4%) for donor cells. These results indicate that fetal fibroblasts transfected with FuGENE 6 can be used as donor cells for porcine SCNT and that GFP gene can be safely used as a marker of foreign genes in porcine transgenesis.

Enzymatic Determination of Somatic Cells by Using Transparisation in Raw Milk

  • Lee, Bou-Oung;Xu, Wen-Ying;Chang, Oun-Ki;Jin, Tai-Hua
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.411-415
    • /
    • 2004
  • The transparisation technology for milk and milk products could be applied widely and very importantly to various determination because transparisation can economize the cost and increase with precision in the milk payment system. Component of butanone or Triton in transparisation solvent would inhibit the growth of bacteria and method. Enzymatic determination of leucocytes were proposed to evaluate milk quality as mastitis in the milk payment system, this can be easily applied to simplify automation of the determation with the lowest investment cost in milk pay system. The significance of this technique, it can be used in the quality control of raw milk and milk products, milk payment system, and programming of national dairy project. Transparisation technology is used in somatic cell counting by enzymic methods. The range of deviation for this method is 16% in 74 samples. But the deviation is increased to 20% when the Infoss method is used. It is affected by the percentage of epithelial cells and white blood cells in somatic cells from different animals and the stages of aging. NAgase activity has an obvious correlation with white-blood cells in milk. In the case of mastitis the white-blood cells is 90-95% in somatic cells in milk, it is showing greater precision in measuring the state of mastitis. In conclusion the enzymic method of somatic cell counting is a relatively simple and easy method of measurement and can be easily practiced. And the importance of this method is also worth utilizing for indirect counting of Somatic cells by use of synthetic substrates to NAgase. In the future, with the further development of the research in this field, it will b possible to automatize the measurement.

Comparison of In Vitro Development of Porcine Embryos Derived from Transfer of Embryonic Germ Cell Nuclei into Oocytes by Electrofusion and Piezo-Driven Microinjection

  • Ahn, Kwang-Sung;Won, Ji-Young;Heo, Soon-Young;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Embryonic germ (EG) cells are undifferentiated stern cells isolated from cultured primordial germ cells (PGC). These cells share many characteristics with embryonic stem cells including morphology and pluripotency. Undifferentiated porcine EG cell lines demonstrating capacities of differentiation both in vitro and in vivo have been established. Since EG cells can be cultured indefinitely in an undifferentiated state, whereas somatic cells in primary culture are often unstable and have limited lifespan, EG cells may provide inexhaustible source of karyoplasts in nuclear transfer (NT). In this study the efficiencies of NT using porcine EG and fetal fibroblast cells were compared. Two different techniques were used to perform NT. With conventional NT procedure (Roslin method) involving fusion of donor cells with enucleated oocytes, the rates of development to the blastocyst stage in EG and somatic cell NT were 16.8% (59/351) and 14.5% (98/677), respectively. In piezo-driven microinjection (Honolulu method) of donor nuclei into enucleated oocytes, the rates of blastocyst formation in EG and somatic cell NT were 11.9% (15/126) and 9.4% (9/96), respectively. Regardless of NT methods used in this study, EG cell NT gave rise to comparable rate of blastocyst development to somatic cell NT. Overall, EG cells can be used as karyoplast donor in NT procedure, and embryos can be produced by EG cell NT that may be used as an alternative to conventional somatic cell NT.