• Title/Summary/Keyword: sorbitan laurate

Search Result 2, Processing Time 0.017 seconds

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Microencapsulation of Anchovy Oil by Sodium Alginate (알긴산소다를 이용한 멸치어유의 미세캡슐화)

  • 임상빈;좌미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.890-894
    • /
    • 1999
  • Microencapsulation of anchovy oil as a core material in sodium alginate as a wall material was inves tigated. Microencapsulation was accomplished by injecting an oil/water emulsion, consisting of a mixture of liquefied sodium alginate and emulsifier, under high pressure through an orifice submerged in a calcium lactate solution. Microcapsules suspended in a dispersion fluid were observed under a fluorescence mi croscope to verify the presence of the capsules and to note coalescence or degradation of the capsules. Optimum conditions for microencapsulation of anchovy oil were obtained when 1.0% aqueous solution of sodium alginate contained 3% of a 1:1 ratio of ESPR 25(polyglycerine+polylinoleate) and TW 20(sorbitan laurate+ethylene oxide) as an emulsifier in terms of capsule size and size distribution, and emulsion stability. The airless sprayer produced microcapsules with a diameter between 15.9 and 73.9 m with different concentration of a wall material. The optimum mixing ratio of wall material to core material was 90:10(wt/wt). 0.2% calcium lactate was appropriate as a dispersion fluid.

  • PDF