• Title/Summary/Keyword: spalling control fiber

Search Result 26, Processing Time 0.035 seconds

Spalling Properties of High Performance Concrete Designed with the Various Types of Coarse Aggregate (굵은골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Heo, Young-Sun;Park, Yong-Kyu;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.95-98
    • /
    • 2006
  • This study investigates spalling properties of high performance concrete, 60MPa clan, made with the various types of coarse aggregate and adding ratio of polypropylene(PP) fiber. As experimental parameters, totally sixteen specimens of ${\phi}100{\times}200mm$ in size are prepared: one specimen for control without fiber, ten specimens with different coarse aggregate types, along with 0.05, 0.1, 0.15 percent of PP fiber in each. 1 hour fire test is conducted and then spalling appearance, spalling degree and residual compressive strength are examined. In addition, sit specimens made with two types of coarse aggregate site, along with same adding ratio of fiber are supplementally done, and only spalling properties is examined. Test results showed that control concrete and most specimens containing 0.05% of PP fiber exhibited 4 to 3 level of spalling degree, resulting severe explosive spalling, except for the specimen using basalt aggregate(Bc) showing 2 to 3 level of that. Especially, the Bc specimen containing 0.1% of the fiber exhibited that residual compressive strength value was 32%, which is 10% higher than other specimens using limestone or granite. Spalling resistance performance was also effective as aggregate size increase.

  • PDF

Fundamental Properties and Spalling Resistance of High Strength Concrete Containing Hybrid Organic fiber (복합유기섬유를 사용한 고강도 콘크리트의 기초특성 및 폭렬방지)

  • Pei, Chang-Chun;Han, Dong-Yeop;Lee, Jin-Woo;Han, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.745-748
    • /
    • 2006
  • This study investigates the fundamental properties and examines spalling appearances and residual compressive strength of high strength concrete containing hybrid organic fibers subjected to fire. Test showed that overall, an increase of fiber content decreased the fluidity of concrete, but specimens containing polyvinyl alcoho(PVA)+polypropylene(PP) fiber and nylon(NY)+PP fiber had improved flow. In addition, the air content of all specimens was properly ranged in target value, regardless of fiber content. As for the spalling properties when completed the fire test, control concrete exhibited spalling occurrence due to sudden elevated temperature. However, specimens containing more than 0.1 vol% of PP fiber prevented the spalling, while specimens containing PP+CL and PVA+PP fiber can protected from fire in more than 0.15vol% of the fiber content. Importantly, a specimen containing only 0.05vol% of NY+PP showed the favorable spalling resistance performance.

  • PDF

Evaluation on Weight Loss of Spalling Control Fiber by Heating Rate (폭렬저감을 위한 섬유의 가열속도에 따른 중량감소평가)

  • Yu, Sung-Il;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Young-Wook;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.32-33
    • /
    • 2014
  • In this study, evaluation on weight loss properties of spalling control fiber with heating rates has been conducted. For evaluation of this study, 3types of organic fibers(Polyethylene, Polypropylene, Nylon) are used as spaling control fiber. Also, to evaluate the effect of heating rate to spallin control fiber, heating rates are set as 10, 25℃/min. As a result, the start time of weight loss of fiber with various heating rate was delayed as heating rate was increased.

  • PDF

Optimum PP Fiber Dosage for the Control of Spalling of High Strength Reinforced Concrete Columns

  • Yoo, Suk-Hyeong;Shin, Sung-Woo;Kim, In-Ki
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.103-109
    • /
    • 2006
  • Spalling is defined as damages to concrete exposed to high temperature during fire, causing cracks and localized bursting of small pieces of concrete. As the concrete strength increases, the degree of damage caused by spalling becomes more serious due to impaired permeability. It is reported that polypropylene(PP) fiber has an important role in protecting concrete from spalling, and the optimum dosage of PP fiber is 0.2%. However, this study was conducted on non-reinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various quantity of PP fibers is investigated in this study. The results revealed that the ratio of unstressed residual strength of columns increased as the concrete strength increased and as the quantity of PP fiber increased from 0% to 0.2%. However, the effect of PP fiber quantity on residual strength of column was barely above 0.2%.

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Spalling Reduction Method of High Strength Reinforced Concrete Columns Using Fibers (섬유를 활용한 고강도 콘크리트기둥의 폭렬제어방안)

  • Yoo, Suk-Hyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • As the concrete strength increases the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene (PP) fiber has an important role in protecting concrete from spalling. However, the excessive usage of PP fiber would not useful in spalling control and would decrease the workability of ultra high strength concrete. The high-temperature behaviors of high-strength reinforced concrete columns with various dosage of PP fibers and three types of fire endurance fibers were observed this study. In results, the ratio of unstressed residual strength of columns, in case of concrete strength 60MPa, increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2% and in case of concrete strength 120MPa, PVA fiber is the most suitable fire endurance fiber in accounting fire endurance performance and workability.

Estimation of Optimum PP Fiber Content for the Spalling Control of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 폭열제어를 위한 최적의 PP섬유함유량 산정)

  • Kim, In Ki;Yoo, Suk Hyeong;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 2007
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's (resulting from evaporation in the material at over $100{^{\circ}C}$)' being confined in watertight concrete. As the concrete strength increases, the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene(PP) fiber has an important role in protecting concrete from spalling and the optimum dosage of PP fiber is 0.2%. This study was conducted on the nonreinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various dosage of PP fibers was investigated in this study. The results show that the ratio of unstressed residual strength of columns increases as the concrete strength increases and the ratio of unstressed residual strength of columns increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2%.

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

Fire Resistance Performance for Hybrid Fiber Reinforced High Strength Concrete Column Member (하이브리드 섬유보강 고강도콘크리트 기둥부재의 내화성능)

  • Won, Jong-Pil;Jang, Chang-Il;Lee, Sang-Woo;Kim, Heung-Youl;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.827-832
    • /
    • 2008
  • This study evaluated fire resistance performance for hybrid (polypropylene+steel) fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, Control specimen occurred serious spalling and indicated rapidly internal temperature increasing. Specimen with polypropylene fiber occurred not spalling but steady internal temperature increasing. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature distribution. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.