• Title/Summary/Keyword: spatial domain

Search Result 874, Processing Time 0.034 seconds

Sound visualization in time domain by using spatial envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.33-36
    • /
    • 2007
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example, when we need to know only the locations and overall propagation pattern of sound sources, a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope, not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.

  • PDF

Low-Complexity Sub-Pixel Motion Estimation Utilizing Shifting Matrix in Transform Domain

  • Ryu, Chul;Shin, Jae-Young;Park, Eun-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1020-1026
    • /
    • 2016
  • Motion estimation (ME) algorithms supporting quarter-pixel accuracy have been recently introduced to retain detailed motion information for high quality of video in the state-of-the-art video compression standard of H.264/AVC. Conventional sub-pixel ME algorithms in the spatial domain are faced with a common problem of computational complexity because of embedded interpolation schemes. This paper proposes a low-complexity sub-pixel motion estimation algorithm in the transform domain utilizing shifting matrix. Simulations are performed to compare the performances of spatial-domain ME algorithms and transform-domain ME algorithms in terms of peak signal-to-noise ratio (PSNR) and the number of bits per frame. Simulation results confirm that the transform-domain approach not only improves the video quality and the compression efficiency, but also remarkably alleviates the computational complexity, compared to the spatial-domain approach.

Image Restoration by Lifting-Based Wavelet Domain E-Median Filter

  • Koc, Sema;Ercelebi, Ergun
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In this paper, we propose a method of applying a lifting-based wavelet domain e-median filter (LBWDEMF) for image restoration. LBWDEMF helps in reducing the number of computations. An e-median filter is a type of modified median filter that processes each pixel of the output of a standard median filter in a binary manner, keeping the output of the median filter unchanged or replacing it with the original pixel value. Binary decision-making is controlled by comparing the absolute difference of the median filter output and the original image to a preset threshold. In addition, the advantage of LBWDEMF is that probabilities of encountering root images are spread over sub-band images, and therefore the e-median filter is unlikely to encounter root images at an early stage of iterations and generates a better result as iteration increases. The proposed method transforms an image into the wavelet domain using lifting-based wavelet filters, then applies an e-median filter in the wavelet domain, transforms the result into the spatial domain, and finally goes through one spatial domain e-median filter to produce the final restored image. Moreover, in order to validate the effectiveness of the proposed method we compare the result obtained using the proposed method to those using a spatial domain median filter (SDMF), spatial domain e-median filter (SDEMF), and wavelet thresholding method. Experimental results show that the proposed method is superior to SDMF, SDEMF, and wavelet thresholding in terms of image restoration.

  • PDF

Image Reconstruction of Dielectric Cylinder Under Born Approximation Using a Coherent Tomographic Scheme in the Spatial Domain (공간영역에서 코히어런트 단층촬영 기법을 이용한 Born 근사하에 유전체 기둥의 영상제현)

  • 서경환;김상기;김세윤;라정웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1327-1335
    • /
    • 1990
  • In this paper, using the principle of duality between the spatial and spectral domain, we proposed a new microwave imaging technique of a coherent tomographic formulation in the spatial domain and reconstructed the image of dielectric cylinder through simulation and experiment. The numerical and experimental results for the variety o object size, relative dielectric constant have shown the limitation of Born approximation to be used and the effect of retrieved images for various signal bandwidth.

  • PDF

Dictionary Learning based Superresolution on 4D Light Field Images (4차원 Light Field 영상에서 Dictionary Learning 기반 초해상도 알고리즘)

  • Lee, Seung-Jae;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.676-686
    • /
    • 2015
  • A 4D light field image is represented in traditional 2D spatial domain and additional 2D angular domain. The 4D light field has a resolution limitation both in spatial and angular domains since 4D signals are captured by 2D CMOS sensor with limited resolution. In this paper, we propose a dictionary learning-based superresolution algorithm in 4D light field domain to overcome the resolution limitation. The proposed algorithm performs dictionary learning using a large number of extracted 4D light field patches. Then, a high resolution light field image is reconstructed from a low resolution input using the learned dictionary. In this paper, we reconstruct a 4D light field image to have double resolution both in spatial and angular domains. Experimental result shows that the proposed method outperforms the traditional method for the test images captured by a commercial light field camera, i.e. Lytro.

TEMPORAL AND SPATIAL DECAY RATES OF NAVIER-STOKES SOLUTIONS IN EXTERIOR DOMAINS

  • Bae, Hyeong-Ohk;Jin, Bum-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.547-567
    • /
    • 2007
  • We obtain spatial-temporal decay rates of weak solutions of incompressible flows in exterior domains. When a domain has a boundary, the pressure term yields difficulties since we do not have enough information on the pressure term near the boundary. For our calculations we provide an idea which does not require any pressure information. We also estimated the spatial and temporal asymptotic behavior for strong solutions.

Half-Pixel Accuracy Motion Estimation Algorithm in the Transform Domain for H.264 (H.264를 위한 주파수 영역에서의 반화소 정밀도 움직임 예측 알고리듬)

  • Kang, Min-Jung;Heo, Jae-Seong;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.917-924
    • /
    • 2008
  • Motion estimation and compensation in the spatial domain check the searching area of specified size in the previous frame and search block to minimize the difference with current block. When we check the searching area, it consumes the most encoding times due to increasing the complexity. We can solve this fault by means of motion estimation using shifting matrix in the transform domain instead of the spatial domain. We derive so the existed shifting matrix to a new recursion equation that we decrease more computations. We modify simply vertical shifting matrix and horizontal shifting matrix in the transform domain for motion estimation of half-pixel accuracy. So, we solve increasing computation due to bilinear interpolation in the spatial domain. Simulation results prove that motion estimation by the proposed algorithm in DCT-based transform domain provides higher PSNR using fewer bits than results in the spatial domain.

The Separation of Time and Space Tree for Moving or Static Objects in Limited Region (제한된 영역에서의 이동 및 고정 객체를 위한 시공간 분할 트리)

  • Yoon Jong-sun;Park Hyun-ju
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.111-123
    • /
    • 2005
  • Many indexing methods were proposed so that process moving object efficiently. Among them, indexing methods like the 3D R-tree treat temporal and spatial domain as the same. Actually, however. both domain had better process separately because of difference in character and unit. Especially in this paper we deal with limited region such as indoor environment since spatial domain is limited but temporal domain is grown. In this paper we present a novel indexing structure, namely STS-tree(Separation of Time and Space tree). based on limited region. STS-tree is a hybrid tree structure which consists of R-tree and one-dimensional TB-tree. The R-tree component indexes static object and spatial information such as topography of the space. The TB-tree component indexes moving object and temporal information.

  • PDF

The effect of error sources on the results of one-way nested ocean regional circulation model

  • Sy, Pham-Van;Hwang, Jin Hwan;Nguyen, Thi Hoang Thao;Kim, Bo-ram
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.253-253
    • /
    • 2015
  • This research evaluated the effect of two main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the results from the coarse data. The two sources should be the domain size, and temporal and spatial resolution different between driving and driven data. The Big-Brother Experiment is applied to examine the impact of them on the results of the ORCMs separately. Within resolution of 3km grid point ORCMs applying in the Big-Brother Experiment framework, it showed that the simulation results of the ORCMs depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The domain size can be selected at 9.5 times larger than the interest area, and the spatial resolution between driving data and driven model can be up to 3 of ratio resolution and updating frequency of the LBCs can be up to every 6 hours per day.

  • PDF

Frame resizing scheme in H.264/AVC compressed domain (H.264/AVC 압축 도메인에서의 프레임 resizing 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.145-147
    • /
    • 2006
  • Image resizing is to change an image size by upsampling or downsampling of a digital image. Most still images and video frames are given in a compressed domain on digital media. Image resizing of a compressed image can be performed in a spatial domain via decompression or recompression. In general, resizing of a compressed image in a compressed domain is much faster than that in a spatial domain. In this paper, we propose an approach to resize images in the integer discrete cosine transform (DCT) domain, which exploits the multiplication-convolution property of DCT.

  • PDF