• Title/Summary/Keyword: speed sensor

Search Result 1,816, Processing Time 0.04 seconds

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.

Speed Control of an Induction Motor using Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기 속도 제어)

  • Kim Lark-Kyo;Choi Sung-Dae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.437-442
    • /
    • 2005
  • In order to realize the speed control of an induction motor, the information of the rotor speed is needed. So the speed sensor as an encoder or a pulse generator is used to obtain it. But the use of speed sensor occur the some problems in the control system of an induction motor. To solve the problems, the appropriate speed estimation algorithm is used instead of the speed sensor. Also there is the limitation to improve the speed control performance of an induction motor using the existing speed estimation algorithm. Therefore, in this paper, intelligent speed estimator using Fuzzy-Neural systems as adaptive laws in Model Reference Adaptive System is proposed so as to improve the existing estimation algorithm and ,using the rotor speed estimated by the Proposed estimator, the speed control of an induction motor without speed sensor is performed. The computer simulation and the experiment is executed to prove the performance of the speed control system usinu the proposed speed estimator.

Design of a Fuzzy-Sliding Observer for improvement of low speed operation of DC Servo Motor (직류 서보전동기 저속운전 성능개선을 위한 퍼지-슬라이딩 관측기설계)

  • 고봉운;김상훈;김낙교
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.153-156
    • /
    • 2004
  • This Paper deals with speed control of DC servo motor using a Fuzzy-Sliding observer. Speed sensor detect a speed of rotor continuously. But It have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system To solve the problem, it is studied to detect a speed of DC motor without sensor In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy control and sliding observer that have a superior transient characteristic and is easy to implement compared the exist ing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is Proposed speed sensor less control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy control and adapted speed control of DC servo motor. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor start ing system.

  • PDF

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

Performance Evaluation of Wheel Detection Sensor Using an Inductive Proximity Sensor for The High Speed Railway (자기유도형 근접센서를 활용한 고속철도용 차륜검지센서 성능 평가)

  • Lee, Kwang-Hee;Lee, Jong-Hyun;Suh, Ki-Bum;Yoon, Suk-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.895-901
    • /
    • 2016
  • Nowadays, the axle counter has been developed to the wide range of the track circuit blocks as well as the wheel detection device. The axle counter, as becoming an important device for the high speed railway, must be guaranteed in accordance with the safety. With considering the safety and the high speed, performance evaluation a wheel detection sensor is described in this paper. To increase the safety, digital proximity sensor instead of analog is employed in the wheel detection sensor. Therefor the wheel detection sensor can minimize noisy signals caused by the harsh railway environments. And, to meet the high speed railway requirements, the performance of the wheel detection sensor is also successfully verified using the speed simulator at the velocity 500Km/h.

Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor (무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어)

  • Kin, Min Ho;Yang, Oh;Kim, Youn Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

CMOS binary image sensor with high-sensitivity metal-oxide semiconductor field-effect transistor-type photodetector for high-speed imaging

  • Jang, Juneyoung;Heo, Wonbin;Kong, Jaesung;Kim, Young-Mo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.295-299
    • /
    • 2021
  • In this study, we present a complementary metal-oxide-semiconductor (CMOS) binary image sensor. It can shoot an object rotating at a high-speed by using a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector. The GBT PMOSFET-type photodetector amplifies the photocurrent generated by light. Therefore, it is more sensitive than a standard N+/P-substrate photodetector. A binary operation is installed in a GBT PMOSFET-type photodetector with high-sensitivity characteristics, and the high-speed operation is verified by the output image. The binary operations circuit comprise a comparator and memory of 1- bit. Thus, the binary CMOS image sensor does not require an additional analog-to-digital converter. The binary CMOS image sensor is manufactured using a standard CMOS process, and its high- speed operation is verified experimentally.

Improvement of Low Speed Operation Characteristic of DC Servo Motor Using a Fuzzy Tuning Speed Observer (퍼지동조 속도관측기를 이용한 직류서보전동기의 저속운전 특성 개선)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • This paper deals with speed control of DC servo motor using a Fuzzy tuning observer. Speed sensor detect a speed of rotor continuously. But it have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve the problem, it is studied to detect a speed of DC motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy observer. The fuzzy observer has a superior transient characteristic and is easy to implement compared the existing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy observer and adapted speed control of DC servo motor low speed operation. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor starting system.