• 제목/요약/키워드: spherical coordinate system

Search Result 60, Processing Time 0.028 seconds

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

Improved Rendering on Spherical Coordinate System using Convex Hull (컨벡스 헐을 이용한 개선된 구 좌표계 기반 렌더링 방법)

  • Kim, Nam-Jung;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.157-165
    • /
    • 2010
  • This paper presents a novel real-time rendering algorithm based on spherical coordinate system of the object using convex hull. While OpenGL rendering pipeline touches all vertices of an object, the proposed method takes account the only visible vertices by examining the visible triangles of the object. In order to determine the visible areas of the object in its spherical coordinate representation, the proposed method uses 3D geometric relation of 6 plane equations of the camera frustum and the bounding sphere of the object. In addition, we compute the convex hull of the object and its maximum side factors for hidden surface removal. Simulation results showed that the quality of result image is almost same compared to original image and rendering performance is greatly improved.

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

3D Model Retrieval based on Spherical Coordinate System (구면좌표계 기반에서 3차원 모델 검색)

  • Song, Ju-Whan;Choi, Seong-Hee
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • In this paper, we propose a new algorithm for 3D model retrieval based on spherical coordinate system. We obtains sample points in a polygons on 3D model. We convert a point in cartesian coordinates(x, y, z) to it in spherical coordinate. 3D shape features are achieved by adopting distribution of zenith of sample point in spherical coordinate. We used Osada's method for obtaining sample points on 3D model and the PCA method for the pose standardization 3D model. Princeton university's benchmark data was used for this research. Experimental results numerically show the precision improvement of proposed algorithm 12.6% in comparison with Vranic's depth buffer-based feature vector algorithm.

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

Application of spherical coordinate system to facial asymmetry analysis in mandibular prognathism patients

  • Yoon, Suk-Ja;Wang, Rui-Feng;Hwang, Hyeon-Shik;Kang, Byung-Cheol;Lee, Jae-Seo;Palomo, Juan Martin
    • Imaging Science in Dentistry
    • /
    • v.41 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Purpose : The purpose of this study was to compare asymmetric mandibular prognathism individuals with symmetric mandibular prognathism individuals using a new alternate spherical coordinate system. Materials and Methods : This study consisted of 47 computed tomographic images of patients with mandibular prognathism. The patients were classified into symmetric and asymmetric groups. Mandibular and ramal lines were analyzed using an alternate spherical coordinate system. The length as well as midsagittal and coronal inclination angle of the lines was obtained. The bilateral differences of the spherical coordinates of the facial lines were statistically analyzed in the groups. Results : There were significant differences between the groups in bilateral difference of the length and midsagittal inclination angle of the lines (p<0.05). The bilateral difference of the length and midsagittal inclination angle of the lines has significant correlation with chin deviation (p<0.05). Conclusion : The new alternate spherical coordinate system was able to effectively evaluate facial lines. The bilateral difference of lengths and midsagittal inclination of the facial lines might contribute to the facial asymmetry in mandibular prognathism individuals.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

New Medical Image Fusion Approach with Coding Based on SCD in Wireless Sensor Network

  • Zhang, De-gan;Wang, Xiang;Song, Xiao-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2384-2392
    • /
    • 2015
  • The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Numerical Simulation for the Advection Equation on the Sphere by Sphere-Lagrangian Method (Semi-Lagrangian법을 이용한 구 좌표계에서의 이류 방정식 해석)

  • Yoon Seong Y.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A Semi-Lagrangian method based on CIP(Cubic Interpolated Pseudoparticle)method is proposed and it is applied to solve the two dimensional advection equation. Especially the attentions are given to settle the pole problem and to enhance the accuracy in solving the advection equation on the spherical coordinate system. Tn this algorithm, the CU method is employed as the Semi-Lagrangian method and extended to the spherical coordinate system. To enhance the accuracy of the solution, the spatial discretization is made by CIP method. The mathematical formulation and numerical results are also described. To verify the efficiency, accuracy and capability of proposed algorithm, two dimensional rotating cosine bell problem and the frontogenesis problem are simulated by the present scheme. As results, it is confirmed that the present scheme gives an accurate solution and settles the pole problem in the advection equation on the sphere.