• Title/Summary/Keyword: spiral wound

Search Result 42, Processing Time 0.024 seconds

Effect of pH in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리 공정에서 pH의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.358-366
    • /
    • 2015
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. After that, spiral wound module was manufactured with it including a woven paper. Effect of pH was studied by comparing permeate fluxes and rejection rates of the spiral wound module using simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing at the end of filtration experiment. In addition, after the water filtrated by the spiral wound module was passed through a column filled with GAC (granular activated carbon), adsorption effect of GAC was investigated by measuring the turbidity and $UV_{254}$ absorbance.

The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by different pretreatment processes (아크릴 폐수의 전처리공정에 따른 UF(tubular)/RO(spiral wound) 공정의 성능변화)

  • Lee, Kwang-Hyun;Han, Sung-Bum;Choi, Dae-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2002
  • The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes were discussed wit the variation of appled pressure and temperature. Ultrafiltration tubular module using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes was shown that COD and T-N were not highly affected with the variation of appled pressure and temperature. It was shown that removal efficiency of COD and T-N was low. Removal efficiency of TDS and turbidity with ultrafiltration tubular module was better with the acrylic wastewater by photo-catalyst pretreatment than acrylic wastewater by coagulant-filter-neutralization pretreatment. T-N and TDS were shown high removal efficiency in reverse osmosis membrane process.

RESONANCE EXCITATION AND THE SPIRAL-RING STRUCTURE OF DISK GALAXIES

  • YUAN CHI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.45-48
    • /
    • 1996
  • Rings are common in disk galaxies. These rings are either indistinguishable from a pair of tightly wound spirals, or themselves are a part of the spiral structure. Furthermore, their occurrence is seen coincident with a bar in the center. In this paper, we interpret this spiral-ring structure as density waves resonantly excited by a rotating bar potential. The theory gives excellent agreement for the molecular spiral-rings in central parts. of nearby disk galaxies, observed by high resolution radio arrays. The same mechanism works for more distant spiral-rings in the outer parts of disk galaxies qualitatively, although the problem is complicated by the coupling of the stellar and gaseous disks.

  • PDF

Effect of Operating Conditions and Recovery of Water Back-washing in Spiral Wound Microfiltration Module Manufactured with PVDF Nanofibers for Water Treatment (수처리용 PVDF 나노섬유 나권형 정밀여과 모듈에서 운전조건의 영향과 물 역세척 회복)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.180-190
    • /
    • 2015
  • PVDF (polyvinylidene fluoride) nanofiber has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. Flat membranes with 0.3 and $0.4{\mu}m$ pore size respectively, were manufactured by PVDF nanofiber, and then each spiral wound module was prepared with them. A woven paper was not included in preparing the module with $0.3{\mu}m$ pore size; however, it was included the module with $0.4{\mu}m$ pore size. The permeate fluxes and rejection rates of the two modules were compared using pure water and simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing. In addition, the effect of flow rate and trans-membrane pressure on treatment efficiency and filtration resistance were investigated for the spiral wound module with $0.4{\mu}m$ pore size.

COMPUTATIONAL STUDY FOR PERFORMANCE EVALUATION OF FLOW CHANNELS INSIDE CDI UNIT CELL (수치모사를 이용한 CDI Unit Cell 내부의 유로성능 평가)

  • Sohn, D.Y.;Choi, Y.H.;Park, D.W.;Jung, C.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • In the present study, computations for flow fields inside the CDI unit cells with electrodes and spacers have been made to evaluate their performance. Three types of unit cells that include a planar type, a serpentine channel type, and a spiral wound type were considered and their flow characteristics were compared. From the computational results, it is found that the serpentine channel type has a large flow resistance and can not guarantee the outflow flux for industrial applications. On the other hand, the planar type can sustain a large enough outflow flux but it's efficiency is low for the electrode-use because of the non-uniform velocity distribution inside the cell and dead zones in every corner. Finally, The spiral wound type has not only a large outflow flux as much as the planar type has, but also a high efficiency for the electrode-use because of uniform velocity distribution. From this comparison, we can expect that the spiral wound type of CDI unit cell would have a high performance deionization capability.

Water purification from pesticides by spiral wound nanofiltration membrane

  • Bottino, A.;Capannelli, G.;Comite, A.;Ferrari, F.;Firpo, R.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • A spiral wound nanofiltration (NF) membrane (GE Osmonics, DK 4040F) was used to remove pesticides from water. Several solutions of single pesticides and their mixtures were prepared. The pesticides initial concentration ranged from ca. 50 ng/L (single pesticide) to ca. 700 ng/L (as sum of 14 pesticides) and progressively increased with time since the NF experiments were carried out in a concentration mode up to a Volume Concentration Ratio, VCR = 10. Permeate flux and pesticides retention were evaluated as a function of the Volume Concentration Ratio. The permeate flux did not practically change by varying VCR. Pesticide retention was found to be around 97-98% both in the cases of single pesticide solutions and different mixtures of pollutants, and was not affected by the VCR. Pesticides concentration in permeate samples was found to be lower than the maximum concentration level fixed in European directive.

수처리용 분리막 모듈 설계 및 오염 방지

  • 정건용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.87-109
    • /
    • 1997
  • Reverse osmosis(R/O), ultrafiltration(UF) and microfiltration (MF) processes are widely used for water treatment. In the seminar, characteristics of typical membrane modules including tubular, hollow fiber, plate and frame and spiral wound types will be discussed in detail. The design methods based on hydrodynamics for hollow fiber and spiral wound modules will be introduced analytically. Concentration polarization (CP) and membrane fouling mechnism as well as the techniques for CP reduction will be handled. The CP control techniques contain chemically modified membrane surface, pretreatment of feed water, operation of low trans-membrane pressure, chemical or physical cleaning methods and artificial production of various fluid turbulences near the membrane surface, etc. In especially, the recent commercial membrane modules for CP control including module rotation, vibration and Taylor or Dean vortex system will be introduced and discussed in detail.

  • PDF

A Study on the Removal Effect of Sewage Treatment Effluent by Ultrafilter Membrane Species (한외여과막의 모듈형태에 따른 하수처리장 방류수의 처리 효과)

  • 김영규
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.19-23
    • /
    • 1998
  • This study has designed to investigate the removal effect of sewage treatment effluent by ultrafilter membrane species and then to analyze the change of pH, bacteria and E. coli., the concentration of chlorides. Ultra filtration process did not effective to remove chloride, Ca and Mg. Spiral type ultrafiltration process was more effective to remove chemical oxygen demand of sewage treatment effluent than Hollow type ultrafiltration process. The flux of spiral wound ultrafilter was higher than the hollow fiber ultrafilter.

  • PDF

Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System (압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구)

  • Hong, Sung Soo;Ryoo, Won;Chun, Myung-Suk;Chung, Gui Yung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.