• Title/Summary/Keyword: static linear analysis

Search Result 580, Processing Time 0.033 seconds

Static equilibrium and linear vibration analysis of a high speed electric train system (고속전철 시스템의 정적평형 및 선형진동 해석)

  • 김종인;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix. The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power car vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the two are identified in this paper.

  • PDF

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

수직방향 집중하중 상태의 외팔보 거동에 대한 선형 및 비선형적 해석 비교

  • Go, Jeong-U;Bin, Yeong-Bin
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.239-245
    • /
    • 2015
  • In this paper, to examine the difference between the linear and non-linear static, dynamic analysis for a structure, a cantilevered beam was used. Then, an external transverse static and dynamic loads were applied at the free end of the beam. Classical theories were used for the linear analysis and the EDISON CSD solver, co-rotational dynamic FEM program, was used for nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in the linear and nonlinear analysis. Then, normalized displacement of tip of the beam was predicted for different frequency ration and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

  • PDF

Static equilibrium and linear vibration analysis of a high speed electric train system (고속 전철 시스템의 정적 평형 및 선형 진동 해석)

  • 김종인;유홍희;황요하
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.305-312
    • /
    • 1998
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix, The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the three are identified in this paper.

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

Mismatching Problem between Generic Pole-assignabilities by Static Output Feedback and Dynamic Output Feedback in Linear Systems

  • Kim Su-Wood
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.56-69
    • /
    • 2005
  • In this paper, it is clearly shown that the two well-known necessary and sufficient conditions mp n as generic static output feedback pole-assignment and mp + d(m+p) n+d as generic minimum d-th order dynamic output feedback pole-assignment on complex field, unbelievably, do not match up each other in strictly proper linear systems. For the analysis, a diagram analysis is newly created (which is defined by the analysis of 'convoluted rectangular/dot diagrams' constructed via node-branch conversion of the signal flow graphs of output feedback gain loops). Under this diagram analysis, it is proved that the minimum d-th order dynamic output feedback compensator for pole-assignment in m-input, p-output, n-th order systems is quantitatively decomposed into static output feedback compensator and its associated d number of arbitrary 1st order dynamic elements in augmented (m+d)-input, (p+d)-output, (n+d)-th order systems. Total configuration of the mismatched data is presented in a Table.

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Non-linear Structural Optimization Using NROESL (등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계)

  • 박기종;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads (비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계)

  • Park Ki-Jong;Kwon Yong-Deok;Song Kee-Nam;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.