• Title/Summary/Keyword: stiffness

Search Result 10,230, Processing Time 0.028 seconds

Theoretical Analyses on Actuator Stiffness and Structural Stiffness of Non-redundant and Redundant Symmetric 5R Parallel Mechanisms (비과구동, 과구동 대칭형 5R 병렬기구의 구동 및 구조 강성의 이론적 해석)

  • Jin, Sang-Rok;Kim, Jong-Won;Seo, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.971-977
    • /
    • 2012
  • Redundant actuated parallel kinematic machines (PKMs) have been widely researched to increase stiffness of PKMs. This paper presents theoretical analyses on the stiffness of non-redundant and redundant actuated PKM. Stiffness of each mechanism is defined by summation of actuator and structural stiffness; the actuator stiffness is determined from displacements of actuators, and the structural stiffness is determined from deformations of links by external forces. Calculated actuator and structural stiffness of non-redundant PKM show same distribution in entire workspace. On the contrary, the actuator and the structural stiffness of a redundant PKM has very different distribution in the workspace; so, we conclude the structural stiffness of redundant PKM should be considered to design the redundant PKM. The results can be used to design and analyze non-redundant and redundant PKMs.

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Modeling of Feed Drive System Considering Combined Stiffness with Longitudinal And Twist Direction (볼스크류의 축-비틀림 복합강성을 고려한 이송계 모델링)

  • 이찬홍;박천홍;노승국;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.387-390
    • /
    • 2002
  • In machine tools, the stiffness of feed drive system is very important for high speed and accurate operation. The ball screw driven feed system has small friction, so the longitudinal and twist stiffness are connected directly and affected by each other. As the longitudinal and twist stiffness are participated in total stiffness of feeding system by about ratio of 4:1, the combined stiffness is necessary to compute when stiffness of feed system is estimated. In this paper, calculation of this combined stiffness is derived and applied for an actual ballscrew fled drive system. The static stiffness and 1 st natural frequency of the feed system is measured, and it is proved the difference between estimation and experiment result is less than 6%.

  • PDF

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio (강성 배분비를 고려한 고강성화 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Lim, Si-Hyung;Kim, Chan-Mook;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

Computation of Complex Stiffness of Inflated Diaphragm in Pneumatic Springs by Using FE Codes (상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.919-925
    • /
    • 2006
  • An accurate mathematical model for complex stiffness of the pneumatic spring would be necessary for an efficient design of a pneumatic spring used in vibration isolation tables for precision instruments such as optical devices or nano-scale equipments. A diaphragm, often employed for prevention of air leakage, plays a significant role of complex stiffness element as well as the pressurized air itself Therefore, effects of the diaphragm need to be included in the dynamic model for a more faithful description of dynamic behavior of pneumatic spring. But the complex stiffness of diaphragm is difficult to predict In an analytical way, since it is a rubber membrane of complicated shape in itself. Moreover, the diaphragm should be expandable in response to pressurization inside a chamber, which makes direct measurement of complex stiffness of diaphragm extremely difficult. In our earlier research, the complex stiffness of diaphragm was indirectly measured, which was just to eliminate the theoretical stiffness of pressurized air from the measured complex stiffness of the pneumatic spring. In order to reflect complex stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however. it is required to be able to predict beforehand. In this paper, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes (e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.

Effect of Refining Conditions and Grammage on the Bending Stiffness of Linerboard (고해 조건과 평량이 라이너 판지의 휨강성에 미치는 영향)

  • Won Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • The effect of refining conditions and grammage on the stiffness of linerboard was investigated. The correlations between Taber stiffness and resonance stiffness were very low due to the different measuring principle. The refining conditions did not affect sig nificantly on both Taber and resonance stiffness estimated here. This means that it is strongly recommended to find and apply the refining conditions which can reduce specific energy consumption. Taber stiffness showed very high correlation for the thickness and elastic modulus of linerboard, while the resonance stiffness showed much lower correlation. Effective thicknesses for Taber stiffness were very well fitted with measured thickness, while those for resonance stiffness depended on the grammage of linerboard.

Verification and Sensitivity Analysis on the Elastic Stiffness of the Leaf Type Holddown Spring Assembly

  • Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.287-297
    • /
    • 1998
  • The elastic stiffness formula of leaf type holddown spring(HDS) assembly is verified by comparing the values of elastic stiffness with the characteristic test results of the HDS's specimens. The comparisons show that the derived elastic stiffness formula is useful in reliably estimating the elastic stiffness of leaf type HDS assembly. The elastic stiffness sensitivity of leaf type HDS assembly is analyzed using the formula and its gradient vectors obtained from the mid-point formula. As a result of sensitivity analysis, the elastic stiffness sensitivity with respect to each design variable is quantified and design variables of large sensitivity are identified. Among the design variables, leaf thickness is identified as the most sensitive design variable to the elastic stiffness of leaf type HDS assembly. In addition, the elastic stiffness sensitivity, with respect to design variable, is in power-law type correlation to the base thickness of the leaf.

  • PDF