• 제목/요약/키워드: stiffness

검색결과 10,207건 처리시간 0.043초

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

조합하중을 받는 무량판 구조의 강성 감소 계수에 관한 고찰 (Stiffness Reduction Factor for Flat-Plate Structures under Combined Load)

  • 송진규;최정욱;윤정배
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.302-310
    • /
    • 2003
  • Cracking of slabs will be caused by applied load and volume changes during the life of a structure and thus it reduces flexural stiffness of slabs. The effect of slab cracking must be considered for appropriate modeling of the flexural stiffness for frame members used in structural analysis. Analytical and experimental study was undertaken to estimate the stiffness reduction of slabs. In the analytical approach, the trend of slab stiffness reduction related to gravity and lateral loads is found and the stiffness reduction factor ranged from a half to a quarter in ACI building code is reasonable when defining range. Analyzing results of the test by Hwang and Moehle for 0.5% drift show that the differences of rotational stiffness on the connection types is found and good results of lateral stiffness using the value of one-third is obtained.

  • PDF

상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출 (COMPUTATION OF COMPLEX STIFFNESS OF INFLATED DIAPHRAGM IN PNEUMATIC SPRINGS BY USING FE CODES)

  • 이정훈;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.844-849
    • /
    • 2006
  • Accurate modeling of complex dynamic stiffness of the pneumatic springs is crucial for an efficient design of vibration isolation tables for precision instruments such as optical devices or nano-technology equipments. Besides pressurized air itself, diaphragm made of rubber materials, essentially employed for prevention of air leakage, plays a significant contribution to the total complex stiffness. Therefore, effects of the diaphragm should be taken care of precisely. The complex stiffness of an inflated diaphragm is difficult to predict or measure, since it is always working together with the pressurized air. In our earlier research, the complex stiffness of a diaphragm was indirectly estimated simply by subtracting stiffness of the pressurized air from measurement of the total complex stiffness for a single chamber pneumatic spring. In order to reflect dynamic stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however, it is required to be able to predict beforehand. In this presentation, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes(e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

  • PDF

Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study

  • Park, Seju;Jeong, Hojin;Kim, Byeonggeun
    • 국제물리치료학회지
    • /
    • 제12권1호
    • /
    • pp.2272-2278
    • /
    • 2021
  • Background: Vibration stimulation has emerged as a treatment tool to help reduce spasticity during physical therapy. Spasticity includes problems of reduced range of motion (ROM) and stiffness. However, the benefits of vibration rolling (VR) on interventions for stroke patients are unclear. Objectives: This study aimed to investigate the effect of VR intervention on the ankle ROM and ankle stiffness in stroke patients. Design: A randomized crossover study. Methods: Seven stroke patients completed two test sessions (one VR and one non-VR [NVR]) in a randomized order, with 48 hours of rest between each session. Participants completed intervention and its measurements on the same day. The measurements included ankle dorsiflexion and plantarflexion ROM and stiffness of ankle muscles, including the tibialis anterior, medial, and lateral gastrocnemius muscle. Results: After VR, ankle dorsiflexion ROM, lateral gastrocnemius stiffness, and medial gastrocnemius stiffness improved significantly (all P<.05). After NVR, only the lateral gastrocnemius stiffness improved significantly (P<.05). Furthermore, in the cases of changed values for ankle dorsiflexion ROM and lateral gastrocnemius stiffness were compared within groups, VR showed a more significant difference than NVR (P<.05) Conclusion: VR improved ankle ROM and muscle stiffness. Therefore, we suggest that practitioners need to consider VR as an intervention to improve dorsiflexion ROM and gastrocnemius stiffness in stroke patients.

Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients

  • Ding, Faxing;Ding, Hu;He, Chang;Wang, Liping;Lyu, Fei
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.127-144
    • /
    • 2022
  • To investigate the flexural stiffness of the steel-composite beam, the contributions of the concrete slab and steel beam to the stiffness were considered separately. The method for flexural stiffness of the composite beam, considering the stiffness of the concrete slab and steel beam, was proposed in this paper. In addition, finite element models of the composite beams were established and validated. Parametric analyses were carried out to study the effects of different parameters on the neutral axis distance reduction factors of the concrete slab and steel beam. Afterward, the neutral axis distance reduction factors were fitted, and the stiffness combination coefficients of the two parts were solved. Based on the stiffness combination coefficients, the flexural stiffness of the composite beam can be obtained. The proposed method was validated by the tested and analyzed results. The method has a simple form and high accuracy in predicting the flexural stiffness of the steel-concrete composite beam, even though the degree of shear connection is less than 0.5.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility

  • Atefatdoost, Gh.R.;Shakib, H.;JavidSharifi, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.281-292
    • /
    • 2017
  • Architecture constraints in buildings may typically cause irregularities in the distribution of stiffness and mass and consequently causes non-compliance of centers of mass, stiffness and strength. Such buildings are known as asymmetric buildings the distribution of strength and stiffness is one of whose main challenges. This distribution is more complicated for concrete buildings with RC shear walls in which stiffness and strength are interdependent parameters. The flexibility under the foundation is another subject that can affect this distribution due to the variation of dynamic properties of the structure and its constituting elements. In this paper, it is attempted to achieve an appropriate distribution pattern by expressing the effects of foundation flexibility on the seismic demand of concrete shear walls and also evaluate the effects of this issue on strength and stiffness distribution among lateral force resistant elements. In order to understand the importance of flexibility in strength and stiffness distribution for an asymmetric building in different conditions of under-foundation flexibility, the assigned value to each of the walls is numerically calculated and eventually a procedure for strength and stiffness distribution dependencies on flexibility is provided.

넙다리뒤근육에 대한 스트레칭이 근육의 뻣뻣함에 미치는 즉각적 효과 (Immediate Effects of Stretching on Hamstring Stiffness)

  • 김중휘;김태호
    • The Journal of Korean Physical Therapy
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Purpose: Stretching exercises are commonly used in conjunction with sports and rehabilitation. Weassessed the immediate effects of stretching on passive stiffness of the hamstring muscles and knee range of motion (ROM) using three stretching techniques. Methods: A total of 45 participants were recruited. Isokinetic equipment was used to measure the passive stiffness of hamstring muscles and an inclinometer was used to measure active and passive ROM of the knee joint pre and post stretching. Stiffness was then calculated based on the incline of the torque-angle relationship. The test conditions for Group I were $3{\times}30$ seconds of static stretches using the hamstring muscle, Group II were $3{\times}30$ seconds of static stretches using the hamstring muscle with ankle dorsiflexion, and Group IIII had $3{\times}30$ seconds of active stretching. Results: Group II had significantly higher excursion of active ROM and Group IIIhad significantly higher excursion of passive muscle stiffness. All of the groups had significantly higher active and passive ROM and significantly lower muscle stiffness after stretching. The participants showed no change in hamstring muscle stiffness on the following day. Conclusion: Stretching has significant acute effects on ROM and muscle stiffness and canbe used in warm-up protocols for reducing muscle stiffness before a variety of exercise programs.

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.