• Title/Summary/Keyword: stiffness reduction

Search Result 817, Processing Time 0.026 seconds

Stiffness Reduction Factor for Flat-Plate Structures under Combined Load (조합하중을 받는 무량판 구조의 강성 감소 계수에 관한 고찰)

  • 송진규;최정욱;윤정배
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.302-310
    • /
    • 2003
  • Cracking of slabs will be caused by applied load and volume changes during the life of a structure and thus it reduces flexural stiffness of slabs. The effect of slab cracking must be considered for appropriate modeling of the flexural stiffness for frame members used in structural analysis. Analytical and experimental study was undertaken to estimate the stiffness reduction of slabs. In the analytical approach, the trend of slab stiffness reduction related to gravity and lateral loads is found and the stiffness reduction factor ranged from a half to a quarter in ACI building code is reasonable when defining range. Analyzing results of the test by Hwang and Moehle for 0.5% drift show that the differences of rotational stiffness on the connection types is found and good results of lateral stiffness using the value of one-third is obtained.

  • PDF

Stiffness Reduction Factor for Flat Plate Slabs (플랫 플레이트 슬래브 해석을 위한 강성감소계수 제안)

  • Park, Young-Mi;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.337-340
    • /
    • 2006
  • The purpose of this study is to propose the stiffness reduction factor for flat plate slabs under lateral loads. Current design code (e.g., ACI 318-05) requires considering the effects of cracks for calculating slab stiffness under lateral loads. This study collected the test results of 20 interior slab-column connections, from which stiffness reduction in each test was estimated with respect to the ratio of applied moment to cracking moment ($M_a/M_{cr}$). Based on collected data, this study proposed equations for calculating stiffness reduction with respect to $M_a/M_{cr}$. To verify the proposed equations, this study conducted the experimental test of interior slab-column connections under quasi-static cyclic loading. From the test, load-deformation curve is compared to that obtained from effective beam width method with the proposed equation for the stiffness reduction. It is shown that the effective beam width method with the proposed equation for stiffness reduction predicts accurately the test results.

  • PDF

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

A Study on the Heavy-weight Floor Impact Sound Reduction Evaluation of Characteristics by Resilient Materials (완충재 종류에 따른 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1145-1148
    • /
    • 2007
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

  • PDF

Evaluation of the Light-weight Floor Impact Sound Reduction Characteristics by Types of Resilient Material (완충재 종류에 따른 경량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.830-834
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the Light-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. As the decreasing dynamic stiffness of resilient material, the impact sound reduction amount is increased, especially in the low frequency domain.

  • PDF

Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients

  • Ding, Faxing;Ding, Hu;He, Chang;Wang, Liping;Lyu, Fei
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.127-144
    • /
    • 2022
  • To investigate the flexural stiffness of the steel-composite beam, the contributions of the concrete slab and steel beam to the stiffness were considered separately. The method for flexural stiffness of the composite beam, considering the stiffness of the concrete slab and steel beam, was proposed in this paper. In addition, finite element models of the composite beams were established and validated. Parametric analyses were carried out to study the effects of different parameters on the neutral axis distance reduction factors of the concrete slab and steel beam. Afterward, the neutral axis distance reduction factors were fitted, and the stiffness combination coefficients of the two parts were solved. Based on the stiffness combination coefficients, the flexural stiffness of the composite beam can be obtained. The proposed method was validated by the tested and analyzed results. The method has a simple form and high accuracy in predicting the flexural stiffness of the steel-concrete composite beam, even though the degree of shear connection is less than 0.5.

An Experimental Study on Damage Assessment of Reinforced Concrete Beams (철근 콘크리트 보의 손상평가에 대한 실험적 연구)

  • Roh Won Kyoun;Shim Chang Su;Hong Chang Kuk;Kim Ki Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.60-63
    • /
    • 2004
  • The paper deals with the damage assessment of the concrete beam using static displacements and the flexural stiffness reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span, and the applied load level ranged $20\%,\;40\%,\;80\%$ of the flexural strength of the beam. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the stiffness reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Four stages of the behavior of a RC beam, which are uncracked, initial cracking, stabilized cracking and post-yielding, can be considered to assess the damage of RC beams. Main parameters for the assessment were cracking area and the stiffness reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Effects of Refining Condition on the Specific Energy Consumption and Physical Properties of Liner (펄프의 고해 조건이 비에너지 소비와 라이너의 물성에 미치는 영향)

  • 원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • The effects of refining consistency and plate gap on the specific energy consumption and physical properties of liner were investigated. Higher refining consistency and narrower plate gap brought about the reduction of specific energy consumption to decrease the freeness. Refining consistency and plate gap did not affect the bulk, Taber stiffness and compression index. The reduction of freeness and/or the increase of specific energy consumption caused the decrease of bulk and Taber stiffness, but increased the compression index. The effect of grammage on bulk was not observed, but Taber stiffness and compression index were increased with grammage. The bulk was decreased with the reduction of freeness rapidly at the above 400 mL CSF, and then levelled off. It is expected that the reduction of energy consumption could be obtained from the application of higher refining consistency and narrower plate gap during refining.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.