• Title/Summary/Keyword: storage fungi

Search Result 149, Processing Time 0.021 seconds

Populations of Fungi and Bacteria Associated with Samples of Stored Rice in Korea

  • Oh, Ji-Yeon;Jee, Sam-Nyu;Nam, Young-Woo;Lee, Ho-Joung;Ryoo, Mun-Il;Kim, Ki-Deok
    • Mycobiology
    • /
    • v.35 no.1
    • /
    • pp.36-38
    • /
    • 2007
  • Stored rice was collected from rice processing complexes of National Agricultural Cooperative Federation of 11 regions in Korea to evaluate the occurrence of fungi and bacteria and to identify the predominant fungi and bacteria to the genus levels. Most rice samples generally produced the higher levels of fungi and bacteria than white rice. The occurrence of fungi and bacteria varied in various locations of Korea. Among fungi observed, Aspergillus spp. and Penicillium spp. were dominant in the samples and Aspergillus spp. were observed more frequently than Penicillium spp. Predominant bacteria from rice and white rice samples tentatively belonged to the Genus Bacillus, Pectobacterium, Pantoea, and Microbacterium according to BIOLOG and FAME analyses. The results of this study showed that rice in Korea was contaminated in a relatively high level by two dominant storage fungi such as Aspergillus spp. and Penicillium spp. In addition, occurrence of mycotoxins in rice by the fungi could be possible and thus it is necessary to control the storage fungi.

Temporal Changes of Fungal and Bacterial Populations in Rice under Indoor Storage Conditions

  • Oh, Ji-Yeon;Sang, Mee-Kyung;Ryoo, Mun-Il;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2008
  • This research was conducted to evaluate fungal and bacterial populations in unhulled and brown rice under indoor storage conditions, and to examine the relationship between microbial populations and environmental conditions such as temperature and relative humidity. The temperature and relative humidity of the storage room ranged from $22.6^{\circ}C\;to\;27.0^{\circ}C$ and 23.3% to 44.2%, respectively. Total fungal and bacterial populations remained relatively stable over the storage period. Predominant fungi included Aspergillus candidus, A. flavus, A. fumigatus, and Penicillium spp.; the predominant bacteria were Bacillus, Microbacterium, Sphingomonas, and Methylobacterium spp. Total fungi and bacteria were not significantly correlated with either unhulled (r=0.448, P=0.372) or brown (r=0.466, P=0.351) rice. In unhulled rice, total fungi showed positive correlations with total Aspergillus (r=0.994, P<0.001) and total Penicillium (r=0.906, P<0.05); A. flavus was positively correlated with total Aspergillus (r=0.913, P<0.05) and total fungi (r=0.868, P<0.05). In brown rice, Bacillus spp. was also positively correlated with total bacteria (r=0.998, P<0.001). Mean temperature was negatively correlated with A. candidus (r=-0.852, P<0.05) and total fungi (r=-0.961, P<0.01), and mean relative humidity was positively correlated with total Penicillium spp.(r=0.884, P<0.05) in brown rice. Hence these results could provide basic information on the fungal and bacterial populations in unhulled and brown rice stored under room conditions, and on the effect of environmental conditions on the populations of fungi and bacteria, especially Aspergillus and Penicillium spp.

Fungi Colonizing Sapwood of Japanese Red Pine Logs in Storage

  • Kim, Jae-Jin;Ra, Jong-Bum;Son, Dae-Sun;Kim, Gyu-Hyeok
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.205-209
    • /
    • 2001
  • The Korean sawmills have recently recognized the importance of prevention of fungal discoloration due to increased losses in revenue. Before establishing integrated control strategies of fungal discoloration, more complete knowledge about causal organisms is needed. As a first step, we initiated a through survey of fungi colonizing commercially important softwood(Pinus dens flora, Pinus koraiensis, and Pinus radiata) logs and lumber in Korea. In this paper we report results obtained from Japanese red pine(Pinus densiflora) log study. In summer 2000, fungi were isolated from Japanese red pine logs in storage, and identified based on their cultural and morphological characteristics. A total of 595 fungi were isolated, representing 21 genera and 30 species. Mold fungi, mostly Trichoderma species, were the most frequently isolating fungi, representing more than half of all isolates. Dematiaceous fungi represented approximately one fifth of the isolates, and Rhinocladiella atorvirens was the most abundant in all samples. Opiostoma species represented 7% of all isolates from cores planted on malt extract agar(MEA) and the incidence of these species doubled with the addition of streptomycin and cycloheximide to MEA. The results indicate that Japanese red pine sapwood is susceptible to colonization by a variety of fungal species. As a result, control strategies that concentrate on one fungus may have limited success because of interference from competing flora.

  • PDF

Effect of Medicinal Plant Extracts on Apple Storage Diseases (약용식물 추출물에 의한 사과 저장병 방제 효과)

  • 백수봉;정일민
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • This experiment was conducted to test the control effect of methanol extracts of 10 medicinal plants on apple storage diseases caused by Botryosphaeria berengeriana, Glomerella cingulata and Penicillium expansum. Out of the 10 medicinal plants, methanol extracts of Coptis japonica and Anemarrhena asphodeloides inhibited effectively the mycelial growth of B. berengeriana, G. cingulata and P. expansum in vitro, for which the inhibition ratios of the two plant extracts were 100.0% and 89.3%, 73.7% and 94.1%, and 100.0% and 51.6%, respectively. Spore germination of the three fungi was inhibited 100% only by C. japonica extract, but only P. expansum was inhibited 100% by A. asphodeloides extract. No lesion was formed y the fungi at 5$^{\circ}C$ up to 2 weeks after inoculation. Lesion sizes produced by the three fungi at the temperature ranges of 1$0^{\circ}C$ to $25^{\circ}C$ and infection of B. berengeriana and G. cingulata were inhibited by C. japonica extract, but not by A. asphodeloides extract, while no lesion was formed by the fungi at 5$^{\circ}C$. Infections of the fungi on apples were somewhat stimulated by A. asphodeloides extract.

  • PDF

Regeneration of Ectomycorrhizal Fungal Isolates Following Deep Freezer Storage

  • Obase, Keisuke;Lee, Sang-Yong;Chun, Kun-Woo;Lee, Jong-Kyu
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.133-136
    • /
    • 2011
  • Mycelial growth and survival ratio of ectomycorrhizal fungi were determined after storage at $-70^{\circ}C$ for 1, 3, or 6 mon. Seventeen of 23 ectomycorrhizal fungi did not survive after storage for more than 6 mon, whereas Cenococcum geophilum, Lepista nuda, and some species of Rhizopogon and Suillus did survive.

A Survey for Distribution of Airborne Microorganisms in Storage of Movable Cultural Properties (동산문화재 다량 보관처의 공기 중 부유 미생물 분포 조사)

  • Hong, Jin-Young;Seo, Min-Seok;Kim, Soo-Ji;Kim, Young-Hee;Jo, Chang-Wook;Lee, Jeung-Min
    • 보존과학연구
    • /
    • s.36
    • /
    • pp.64-73
    • /
    • 2015
  • The temple and family or private owner have managed the storage space of movable cultural properties. Thus they lack the ability to manage professionally and systematically, movable cultural properties are in a poor environment and have been damaged by abundant dust and airborne fungi in the storage. In this study, we investigated microbes distribution in 10 storage or exhibition hall housing the movable cultural properties. As a results, concentration of collected microorganisms exhibited a large difference according to a storage and the D Relic Museum in Yeongam is the most contaminant storage, in which detected $2,000m^3$ or more. More than $166m^3$ of the fungi were detected in most storages of the other. We identified so many varieties of fungi such as Aspergillus sp., Penicillium sp., Alternaria sp. and Cladosporium sp. existing commonly in 10 storages including wood rot fungi such as Ceriporia lacerata, Ganoderma carnosum, Myrothecium gramineum and Bjerkandera sp.. This airborne fungi may damage cultural heritages. The Guideline on a concentration of airborne fungi should be estimated and management system to the preservation environment must be provided.

  • PDF

Mold Growth and Mycotoxin Contamination of Forages (조사료의 곰팡이 발생과 곰팡이독소 오염)

  • Sung, Ha-Guyn;Lee, Joung-Kyong;Seo, Sung;Lim, Dong-Cheul;Kim, Jong-Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.77-88
    • /
    • 2010
  • In order to ensure good animal health and performance, it is essential to produce forages with high feeding value and good hygienic quality. However, huge amounts of forages consumed by ruminants are contaminated with mold prior to harvest or during storage as hay, straw or silage. These mold can grow in forages only when nutrients are available, correct temperature exist, oxygen is present, and unbound water is available. Fungal 'species can be divided into two groups: field fungi and storage fungi. Field fungi invade the forages while the crop is still in the field, require high moisture conditions, and are such as species of Fusarium, Alternaria, Clodosporium, Diplodia, Gibberrella and Helminthosporium. Storage fungi invade forages during storage and need less moisture than field fungi. These such as species of Aspergillus and Penicillium usually do not occur any problem before harvest. Mold growth can spoil the nutritional aspects of the forages and also results in secondary metabolites that are highly toxic to animal, humans and plants. Moldy feeds are less palatable and may reduce dry matter intake. This, in turn, leads to a reduction of nutrition intake, reducing weight gains or milk production. Performance losses of 5 to 10 percent are typical with moldy feeds. Mycotoxins are toxic substances produced by fungi (molds) growing on crops in the field or storages. While greater than 400 mycotoxins have been chemically identified, the biological or veterinary medical impact of only several mycotoxins is known. Mycotoxins have attracted considerable attention as potential causes for poor performance and health disorders in domestic livestock. They can be carcinogenic, hepatotoxic, hematotoxic, immunosuppressive, estrogenic, or mutagenic. So, feeding moldy forages has adverse effects on animal health and milk consumers. Also, this author reported that rice straw hay was contaminated mycotoxigenic fungi such as Penicillium roqueforti and Fusarium culmorum in Korea. Therefore, it is an urgent need to develop an improved post harvest storage method to reduce nutrient loss and mycotoxin contamination of forages, which will have a positive impact on human health.

Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.240-254
    • /
    • 2017
  • Cereal grains are the most important food source for humans. As the global population continues to grow exponentially, the need for the enhanced yield and minimal loss of agricultural crops, mainly cereal grains, is increasing. In general, harvested grains are stored for specific time periods to guarantee their continuous supply throughout the year. During storage, economic losses due to reduction in quality and quantity of grains can become very significant. Grain loss is usually the result of its deterioration due to fungal contamination that can occur from preharvest to postharvest stages. The deleterious fungi can be classified based on predominance at different stages of crop growth and harvest that are affected by environmental factors such as water activity ($a_w$) and eco-physiological requirements. These fungi include species such as those belonging to the genera Aspergillus and Penicillium that can produce mycotoxins harmful to animals and humans. The grain type and condition, environment, and biological factors can also influence the occurrence and predominance of mycotoxigenic fungi in stored grains. The main environmental factors influencing grain fungi and mycotoxins are temperature and $a_w$. This review discusses the effects of temperature and $a_w$ on fungal growth and mycotoxin production in stored grains. The focus is on the occurrence and optimum and minimum growth requirements for grain fungi and mycotoxin production. The environmental influence on aflatoxin production and hypothesized mechanisms of its molecular suppression in response to environmental changes are also discussed. In addition, the use of controlled or modified atmosphere as an environmentally safe alternative to harmful agricultural chemicals is discussed and recommended future research issues are highlighted.

Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.67-78
    • /
    • 2016
  • Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.

Effect of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 Dipping on Storage Property and Sensory Quality of Strawberry

  • Mo, Eun-Kyoung;Sung, Chang-Keun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.487-492
    • /
    • 2005
  • Simple competition plate bioassays of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 were conducted to evaluate their potential as biological control agents that inhibit growth of Botrytis cinerea during post-harvest storage of strawberries (Fragaria ${\times}$ ananassa Duche, Red-Pearl). Occurrence rates of fungi on the surface of yeast-treated strawberries were evaluated during storage at $4^{\circ}C$. P. anomala SKM-T and G. geotrichum SJM-59 showed antifungal activities on agar plate, and P. anomala SKM-T maintained its desirable antifungal activity on surface of strawberries and its physicochemical properties during storage. Sensory evaluation was based on kinesthetics and consumer acceptability. Due to its potential antifungal activity, P. anomala SKM-T could function as biological control agent against spoilage fungi during post-harvest storage of strawberries.