• Title/Summary/Keyword: stratification

Search Result 1,221, Processing Time 0.025 seconds

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Effect of an aspect ratio on thermal stratification in a solar seasonal thermal storage tank (태양열 계간 축열조 내부 열성층화에 대한 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, we numerically investigated the thermal stratification in solar seasonal thermal storage tanks. The vertical in/out flows were unsuitable for the thermal stratification in a large scale. The effect of an aspect ratio (AR) on the thermal stratification was investigated. When AR was less than 2, water adheres and flows along the upper wall due to buoyance and the surface effect. Thereafter, hot water flows down and a large scale vortex occurs in entire tank. For high AR, jet flows ejected from the inlet pipe impinges to the opposite wall and splits. The divided flows create two vortex flows in the upper and lower regions. These different flows strongly influence temperature and thermal stratification. The thermal stratification was evaluated in terms of the thermocline thickness and degree of stratification. Compared to ARs, the maximum degree of stratification was obtained with AR of 5 having the minimum thermocline thickness.

Enhancement of Seed Germination by Aging, Cold-stratification, and Light Quality during Desiccation in Burcucumber (Sicyos Angulatus L.)

  • Kang, Jin-Ho;Jeon, Byong-Sam;Lee, Sang-Woo;Choe, Zhin-Ryong;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • Seeds of burcucumber were treated with accelerated aging, cold-stratification, and light quality illuminated during desiccation to enhance their germination and seedling emergence. The germination was increased by aging and cold-stratification although the latter treatment showed greater effectiveness than the former one. In the combined treatment of aging 6 days at $45^{\circ}C$ and cold-stratification, the germination was promoted under longer period of cold-stratification to reach nearly 100% in 3 week cold-stratification on the ninth day from sowing. In the sequentially combined treatment of aging, cold-stratification, and light quality during 24 hour desiccation at $35^{\circ}C$, no-stratified seeds showed the highest rate in red light treatment but the lowest in far-red light. This implies that the phytochrome action run during the desiccation of imbibed seeds. The red light exposure during drying for the cold-stratified seeds after aging accelerated the germination even more than the dark treatment and germinated 100% on the next day of sowing. It is concluded that the sequential treatment of aging, cold-stratification, and red light illumination during desiccation can highly promote percentage and speed of burcucumber seed germination.

Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey (다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례)

  • Park, Jin-Woo;Kim, Young-Won;Lee, Seok-Hoon;Shin, Ji-Eun
    • Survey Research
    • /
    • v.9 no.1
    • /
    • pp.69-85
    • /
    • 2008
  • Stratification is a feature of the majority of field sample design. This paper considers the multivariate stratification strategy for multipurpose sample survey with several auxiliary variables. In a multipurpose survey, stratification procedure is very complicated because we have to simultaneously consider the efficiencies of stratification for several variables of interest. We propose stratification strategy based on factor analysis and cluster analysis using several stratification variables. To improve the efficiency of stratification, we first select the stratification variables by factor analysis, and then apply the K-means clustering algorithm to the formation of strata. An application of the stratification strategy in the sampling design for the Fisher Production Survey is discussed, and it turns out that the variances of estimators are significantly less than those obtained by simple random sampling.

  • PDF

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

A Numerical Analysis on Thermal Stratification Phenomenon by In-Leakage in a Branch Piping

  • Park Jong-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2245-2252
    • /
    • 2005
  • Thermal stratification in the branch piping of power plants can be generated by turbulent penetration or by valve leakage. In this study, a numerical analysis was performed to estimate the thermal stratification phenomenon by in-leakage in the SIS branch piping of nuclear power plant. Leakage rate, leakage area and leakage location were selected as evaluation factors to investigate the thermal stratification effect. As a result of the thermal stratification effect according to leakage rate, the maximum temperature difference between top and bottom of the horizontal piping was evaluated to be about 185K when the valve leakage rate was about 10 times as much as the allowed leakage rate. For leakage rate more than 10 times the allowed leakage rate, the temperature difference was rapidly decreased due to the increased mixing effect. In the result according to leakage area, the magnitude of temperature difference was shown in order of $3\%,\;1\%\;and\;5\%$ leakage area of the total disk area. In the thermal stratification effect, according to the leakage location, temperature difference when leakage occurred in the lower disk was considerably higher than that of when leakage occurred in the upper disk.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

Seasonal Variations and Characteristics of the Stratification Depth and Strength in the Seas Near the Korea Peninsular using the Relative Potential Energy Anomaly (한반도 근해의 상대적 위치에너지 편차 변화를 이용한 성층화의 특성과 계절별 변화에 대한 연구)

  • Cho, Chang-Bong;Kim, Young-Gyu;Chang, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • In this paper, we have proposed a method for quantization of the stratification strength in the sea water and analysing the distributions of the maximum stratification depths calculated by the method at the seas near the Korean peninsular. For calculating the stratification strength, modified and applied the potential energy anomaly formular which was suggested by Simpson in 1977. The data had been collected by NFRDI from 1971 to 2008 were used to determine the maximum vertical density gradient depth and the relative potential energy anomaly at that depth. In the East Sea, the stratification depth has become deepened about 20m in February and April since 1971. In Yellow-South Sea, the maximum density gradient depth has been deepened about 10m only in December during the same period and the difference of the stratification depth between summer and winter has been enlarged. These trends of variation of stratification strength and depth near the Korean peninsular should be investigated more carefully and continuously. And the results of these studies could be adopted for the more efficient operation of underwater weapon and detection systems.