• Title/Summary/Keyword: strawberry gray mold

Search Result 36, Processing Time 0.031 seconds

Effect of nitrogen types and the electrical conductivity of a nutrient solution on gray mold caused Botrytis cinerea on strawberry plants

  • Nam, Myeong hyeon;Lee, Hee chul;Kim, Tae il
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.103-111
    • /
    • 2019
  • Gray mold caused by Botrytis cinerea on strawberry plants is an economically significant disease in Korea. The rates for diseased fruits are high during the strawberry harvesting period from December to February, especially in hydroponic cultivation. This study assessed the effect of the nitrogen type in the soil culture and the electrical conductivity (EC) of the nutrient solution in a hydroponic culture on the gray mold incidence in 'Seolhyang' strawberry plants. The nitrogen sources assayed included calcium nitrate tetrahydrate (CN4), calcium nitrate decahydrate (CN10), ammonium sulfate (AS), and commercial fertilizer 213 (213). The effect of the EC was tested at 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$. The occurrence of gray mold varied according to the nitrogen type. The disease incidence and nitrogen content for the main nitrogen type were higher compared to the non-treated control. The AS treatment showed the highest occurrence of tipburn and gray mold. The incidence of gray mold as well as the nitrogen and phosphorus content of the leaves increased as the EC level was increased. These results indicate that the incidence of gray mold in strawberry plants is related to the nitrogen content of the leaf and the EC of the nutrient solution.

Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants (길항성 근원 세균이 딸기 시설재배에서 발생하는 잿빛곰팡이병의 생물학적 제어에 미치는 영향)

  • Cho, Jung-Il;Cho, Ja-Yong;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2005
  • This study was carried out to clarify the effects of antifungal bacterial strains isolated from the greenhouse soil grown strawberry plants on the growth inhibition of plant pathogen, gray mold (Botrytis cinerea) infected in strawberry plants in Damyang and Jangheung districts. Antagonistic bacterial strains were isolated and investigated into the antagonistic activity against gray mold. Screened ten bacterial strains which strongly inhibited Botrytis cinerea were isolated from the greenhouse grown strawberry plants, and the best antifungal microorganism designated as SB 143 was finally selected. Antifungal bacterial strain SB 143 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. SB 143 showed 59.4% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. SB 143 showed 93.1% and 32.1% of antagonistic activity against Botrytis cinerea.

  • PDF

Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries

  • Hang, Nguyen Thi Thu;Oh, Soon-Ok;Kim, Gyoung-Hee;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • Bacillus subtilis S1-0210 was selected as a biological agent against Botrytis cinerea in strawberry. The isolate inhibited mycelial growth of B. cinerea in vitro tests. A wettable powder formulation of B. subtilis S1-0210 significantly reduced infection rates with lower than 5%, compared with higher than 70% of infection rates in untreated control. The formulation showed 85 to 89% control efficacies of gray mold incidences on fruits of strawberry in pots. Pre-treatment of the agent was more effective in controlling gray mold on fruits and leaves than post-treatment at the early stage of disease development. The formulation also showed 70% control efficacy of gray mold incidence on fruits of strawberry in a field trial. The results indicate that B. subtilis S1-0210 in the wettable powder formulation may be a potential biocontrol agent to control gray mold on strawberry.

Isolation and development of Bacillus subtilis S1-0210 as a biocontrol agent of gray mold of strawberry

  • Nguyen, Hang T.T.;Oh, S.O.;Hur, J.S.;Koh, Y.J.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.98.1-98
    • /
    • 2003
  • Antagonistic effect of bacterial strains isolated from phylloplane of strawberry plants grown In greenhouse was tested on Botrytis cinerea Among the promising bacterial strains, Bacillus sp. S1-0210 showed highest inhibition of mycelial growth of B. cinerea and a broad spectrum of antifungal activities against many plant pathogenic fungi in vitro. Bacillus sp. S1-0210 was identified as Bacillus subtilis based on the analysis of 185 rDNA as well as its biochemical characteristics. Application of wettable powder formulation of B. subtiiis S1-0210 significantly reduced the incidence of gray mold on trawberry fruits during storage. Results showed that treatment of B. subtilis S1-0210 decreased the incidence of gray mold by 4.8% whereas the incidence in control was 77.9%, indicating that the formulation of B. subtilis S1-0210 will be practically applied on strawberry fruits as a biocontrol agent of gray mold during storage.

  • PDF

Biological Control of Strawberry Gray Mold Caused by Botrytis cinerea Using Bacillus licheniformis N1 Formulation

  • Kim, Hyun-Ju;Lee, Soo-Hee;Kim, Choul-Sung;Lim, Eun-Kyung;Choi, Ki-Hyuck;Kong, Hyun-Gi;Kim, Dae-Wook;Lee, Seon-Woo;Moon, Byung-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.438-444
    • /
    • 2007
  • Bacillus licheniformis N1 is a biological control agent to control gray mold diseases caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were generated and evaluated for the activity to control strawberry gray mold. The wettable powder type formulation N1E was selected in pot experiments with remarkable disease control activity on both strawberry leaves and flowers. The N1E formulation contained 400 g of com starch, 50 ml of olive oil, and 50 g of sucrose per a liter of bacterial fermentation culture. Optimum dilution of N1E to appropriately control the strawberry gray mold appeared to be 100-fold dilution in plastic house artificial infection experiments. The significant reduction of symptom development in the senescent leaves was apparent by the treatment of N1E at 100-fold dilution when N1E was applied before Bo. cinerea inoculation, but not after the inoculation. Both artificial infection experiments in a plastic house and natural infection experiments in the farm plastic house under production conditions revealed that the disease severity of gray mold on strawberry leaves and flowers was significantly reduced by N1E treatment. The disease control value of N1E on strawberry leaves was 81% under production conditions, as compared with the 61.5% conferred by a chemical fungicide, iprodione. This study suggests that our previously generated formulation of B. licheniformis N1 will be effective to control strawberry gray mold by its preventive activity.

Studies on Botrytis cinerea Density in Packing Shed and Gray Mold Incidence Following Storage-Temperature in Exported Strawberry (수출딸기 선별장에서 잿빛곰팡이병원균 밀도조사와 저장온도에 따른 잿빛곰팡이병 발생 연구)

  • Kim, Da-Ran;Jeon, Chang Wook;kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.295-300
    • /
    • 2015
  • Currently, amount of export strawberry has been continuously increased to ship many south Asia countries, including Hong Kong and Singapore. In the distribution process, significant damage to the quality has been caused depending on the environmental conditions. Gray mold disease caused by Botrytis cinerea has been known as major damage to the export strawberry, and the disease was caused during shipping and distribution to the final consumers. This study was performed to assess the relationship between pathogen density in packing shed and disease incidence of gray mold during storage period. Maximum gray mold disease incidence in storage period was up to 16% with low temperature condition ($4^{\circ}C$). At room temperature condition, the disease incidence reached up to 100% even densities of the pathogen spore were recorded relatively low in the packing shed. As results of the study, the correlation between pathogen density in the air and disease occurrence clearly clarified.

Antagonistic Effect of Streptomyces sp. BS062 against Botrytis Diseases

  • Kim, Young-Sook;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.339-342
    • /
    • 2015
  • The use of microorganisms and their secreted molecules to prevent plant diseases is considered an attractive alternative and way to supplement synthetic fungicides for the management of plant diseases. Strain BS062 was selected based on its ability to inhibit the mycelial growth of Botrytis cinerea, a major causal fungus of postharvest root rot of ginseng and strawberry gray mold disease. Strain BS062 was found to be closely related to Streptomyces hygroscopicus (99% similarity) on the basis of 16S ribosomal DNA sequence analysis. Postharvest root rot of ginseng and strawberry gray mold disease caused by B. cinerea were controlled up to 73.9% and 58%, respectively, upon treatment with culture broth of Streptomyces sp. BS062. These results suggest that strain BS062 may be a potential agent for controlling ginseng postharvest root rot and strawberry gray mold disease.

Effect of Chlorine Dioxide on Freshness of 'Maehyang' Strawberries during Export

  • Kim, Hye Min;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.626-633
    • /
    • 2016
  • The objective of this study was to assess the effect of precooling and application of gaseous $ClO_2$ on the retention of freshness and quality of 'Maehyang' strawberry fruits intended for export. 'Maehyang' strawberry fruits (Fragaria ${\times}$ ananassa Duch.) were grown in commercial greenhouses and then harvested. Fruits of uniform and medium size at 60% ripeness were selected and assigned to one of four treatment groups: non-treatment (control), precooling only (PO), gaseous $ClO_2$ only (GCO) or precooling combined with gaseous $ClO_2$ (P + C). Weight loss was lowest in the PO treatment and greatest in the GCO treatment after export. Compared to the control and PO treatment groups, strawberry fruits in the GCO treatment group maintained high brightness and high chroma. Six days after shipping, fruits in the P + C treatment group had the highest soluble solids content, even as high as $10.05^{\circ}Brix$; the lowest value was observed in the PO treatment. The incidence rate of gray mold in strawberry fruits was 20% and 17% in the control and the PO treatment, respectively; in the GCO treatment, the incidence rate of gray mold amounted to 10%. No gray mold was observed in the P + C treatment group. These results indicate that gaseous $ClO_2$ treatment combined with precooling (P + C) was effective in maintaining the freshness of 'Maehyang' strawberry fruits intended for export from South Korea to Hong Kong.

Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit

  • Kim, Sung-Taek;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2011
  • During 2002-2008 in Korea, 455 extracts from myxobacteria consisting of 318 cellulolytic and 137 bacteriolytic myxobacteria were isolated, which were then screened for antifungal activity against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Penicillium sp., Pyricularia grisea, and Phytophthora capsici. 204 isolates had antifungal activity, causing both a clear zone due to blocked spore germination and inhibition of mycelial growth; most (199) were from cellulolytic (Sorangium cellulosum) and only five were from bacteriolytic myxobacteria. B. cinerea, the best controlled among the five tested pathogens, had a unique group of antifungal isolates of myxobacterial extracts compared to the other pathogens' groups. Among seventy-nine bioactive myxobacteria, four isolates, KYC 3130, KYC 3247, KYC 3248 and KYC 3270, were selected and all were cellulolytic. Liquid culture filtrates of these four myxobacteria were applied to tomato, cherry tomato, strawberry, and kiwi fruits 5 h before inoculation with gray mold conidia; then the treated fruits were placed in an airtight container and the experiment was repeated six to eight times. Incidence (%) of gray mold on fruit of the infected control treatment was 84-98%, whereas it was only 5-21% after the KYC 3270 treatment. After KYC 3270 treatment of the four fruits, mold control was 79-95%, which was highest among the filtrates and statistically the same as treatment with fludioxonil, a registered chemical against gray mold of stored fruits.

Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Nam, Myeong-Hyeon;Lee, Seon-Woo;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Biological control activity of Acremonium strictum BCP, a mycoparasite on Botrytis cinerea, was examined against six plant diseases such as rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew in growth chambers. The spore suspension of strain BCP showed strong control activities against five plant diseases except against wheat leaf rust. On the other hand, the culture filtrate of A. strictum BCP was effective in controlling only cucumber gray mold and barley powdery mildew. Further in vivo biocontrol activities of A. strictum BCP against tomato gray mold were investigated under greenhouse conditions. Control efficacy of the fungus on tomato gray mold increased in a concentration-dependent manner. Treatment of more than $1{\times}10^6$ spores/ml significantly controlled the disease both in tomato seedlings and in adult plants. The high disease control activity was obtained from protective application of the strain BCP, whereas the curative application did not control the disease. Foliar infections of B. cinerea were controlled with $1{\times}10^8$ spores/ml of A. strictum BCP applied up to 7 days before inoculation. In a commercial greenhouse, application of A. strictum BCP exhibited the similar control efficacy with fungicide procymidone (recommended rate, $500{\mu}g/ml$) against strawberry gray mold. These results indicate that A. strictum BCP could be developed as a biofungicide for Botrytis diseases under greenhouse conditions.