• Title/Summary/Keyword: strengthen enamel

Search Result 2, Processing Time 0.019 seconds

Enamel strengthening effect of the dental fluoride compound (수종의 치과용 불소화합물의 물리적 조건에 따른 치질강화에 미치는 영향)

  • Kim, Joo-Won;Lee, Jung-Ae;Lee, Ka-Yean
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.4
    • /
    • pp.757-764
    • /
    • 2010
  • Objectives : The fluoride coating for caries prevention and strengthen enamel use NaF(sodium fluoride, Junsei Chemical Co., Ltd, Japan) 2% gel, SnF2(stannous fluoride, SIGMA-ALDRICH Gmbh, USA)8% gel and APF(acidulated phosphate fluoride, Sultan health care, USA) 1.23% gel. Methods : After put the enamel piece in these fluoride compound gel, we observed density level. And after measuring the vickers hardness, Got the following conclusions. Results : 1. After settling in the APF 1.23% during 6 days, we observed high density level of enamel surface using 250 magnification scanning microscope. The vacuum of surface packed (in) like sardines. 2. After settling in the APF 1.23% during 6 days, we observed reducing the space between the cluster of enamel surface using 50,000 magnification scanning microscope. 3. The vickers hardness change was very much on the all kinds of fluoride compound gel[2% NaF(sodium fluoride)gel, 8% SnF2(stannous fluoride) gel, 1.23% APF(acidulated phosphate fluoride)gel]. It's all because of reducing the space between the cluster of enamel surface(p<0.001). Conclusions : The vickers hardness change was very much on the all kinds of fluoride compound. It's all because of reducing the space between the cluster of enamel surface.

Epigallocatechin-3-gallate prior to composite resin in abfraction lesions: a split-mouth randomized clinical trial

  • Luisa Valente Gotardo Lara Alves;Lisiane Martins Fracasso;Thiago Vinicius Cortez;Aline Evangelista Souza-Gabriel;Silmara Aparecida Milori Corona
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Objectives: Natural extracts have been investigated as a biomimetic strategy to mechanically strengthen the collagen network and control the biodegradation of extracellular matrix. This study evaluated the effect of epigallocatechin-3-gallate (EGCG) on abfraction lesions prior to the composite resin. Materials and Methods: The sample consisted of 30 patients (aged between 28 and 60 years) with abfraction lesions located in 2 homologous premolars. The teeth were randomly assigned according to dentin treatment: 0.02% EGCG solution or distilled water (control). After enamel acid etching, the solutions were applied immediately for 1 minute. The teeth were restored with Universal Adhesive (3M) and Filtek Z350 XT (3M). Analyzes were done by 2 independent examiners using modified USPHS (retention, secondary caries, marginal adaptation, and postoperative sensitivity) and photographic (color, marginal pigmentation, and anatomical form) criteria at baseline (7 days) and final (18 months). The data analysis used Friedman and Wilcoxon signed-rank tests (α = 0.05). Results: At baseline, all restorations were evaluated as alpha for all criteria. After 18 months, restorations were evaluated as alpha for secondary caries, color, and marginal pigmentation. There was significant difference between baseline and 18 months (p = 0.009) for marginal adaptation and postoperative sensitivity (p = 0.029), but no significant difference were verified between treatments (p = 0.433). The EGCG group had a restoration retention rate of 93.3%, while the control group had 96.7%. Conclusions: The application of EGCG solution on abfraction lesions did not significantly influence the survival of the restorations based on clinical and photographic criteria.