• Title/Summary/Keyword: stress assessment

Search Result 1,408, Processing Time 0.027 seconds

A Study on Structural Integrity Assessment of Pipeline using Weight Function Solution (가중함수법을 적용한 파이프라인 구조건전성평가에 관한 연구)

  • Noh, Ki-Sup;Oh, Dong-Jin;Kim, Myun-Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • There are many Industry Code and Standard (ICS) for Structural Integrity Assessment (SIA) on welded structure with defect. The general ICSs, such as R6, BS 7910 and API 579-1/ASME FFS-1, provide equations to determine the upper bound residual stress profiles based on collections from many literatures. However, these residual stress profiles used in the SIA cause the conservative design for welded structures. In this study, the structural integrity assessment for girth weld in pipeline has been conducted based on fracture mechanics. In addition, thermo-elastic plastic FE analysis was performed for evaluating the residual stress of girth weld in pipeline. The weight function solution is used to determine the stress intensity factor using the residual stress profile obtained by the FE analysis. This approach can account for redistribution and relaxation of residual stress as the defects grow. In order to the evaluate quantitative comparison between BS 7910 and weight function solution, structural integrity assessment determining allowable crack size on cracked pipe was performed with failure assessment diagram.

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-Wave Technique in the Longitudinal Direction (수축방향(樹軸方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • This study was performed to investigate the feasibility of using sonic stress-wave technique in the longitudinal direction for the assessment of incipient decay of radiata pine wood. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested nondestructively using stress-wave technique in the longitudinal direction and destructively. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, stress-wave elasticity) measured by stress-wave technique in the longitudinal direction and their percent reduction due to decay.

  • PDF

Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

  • Kim, Seong-Min;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.10-24
    • /
    • 2015
  • This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

Comparative Analysis of Work Stress Assessment Tools for Estimating Human Work Performance (업무수행도 추정을 위한 직무스트레스 평가표의 비교 분석)

  • Jang, Tong-Il;Lee, Yong-Hee;Han, Kyu-Jeong;Lim, Hyeon-Kyo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.144-150
    • /
    • 2014
  • A man is a component of a large system how complex it may be so that human performance which can influence on the system safety should be included in system safety assessment. Meanwhile, human performance can vary over time due to lots of factors. Among them, stress is an indirect factor that may cause human error which can result in industrial accidents. To assess stress level of human workers, not a few assessment tools have been developed. However, it can be questionable to utilize them for human performance anticipation because they were mainly developed with the viewpoint of mental health, though stress assessment can be also required in the safety aspect. Therefore, this study aimed to survey the possibility of their application with safety purpose. About 10 kinds of work stress tools were collected and analyzed with reference to assessment items, assessment and analysis methods, and follow-up measures. The results showed that most tools focused their weights on Demands, Supports, and Relationships, in sequence. However, they, except only one tool developed by the Japanese researchers, merely advised to set up counterplans in PDCA cycle or risk management activities. In consequence, application of stress assessment tools mainly developed for mental health seemed impractical for safety purpose with respect to human performance anticipation so that it was concluded that development of a new assessment tools aimed to human performance variation and accident prevention would be inevitable.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction (횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Guen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

Work-Related Stress Risk Assessment in Italy: A Methodological Proposal Adapted to Regulatory Guidelines

  • Persechino, Benedetta;Valenti, Antonio;Ronchetti, Matteo;Rondinone, Bruna Maria;Tecco, Cristina Di;Vitali, Sara;Iavicoli, Sergio
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.95-99
    • /
    • 2013
  • Background: Work-related stress is one of the major causes of occupational ill health. In line with the regulatory framework on occupational health and safety (OSH), adequate models for assessing and managing risk need to be identified so as to minimize the impact of this stress not only on workers' health, but also on productivity. Methods: After close analysis of the Italian and European reference regulatory framework and workrelated stress assessment and management models used in some European countries, we adopted the UK Health and Safety Executive's (HSE) Management Standards (MS) approach, adapting it to the Italian context in order to provide a suitable methodological proposal for Italy. Results: We have developed a work-related stress risk assessment strategy, meeting regulatory requirements, now available on a specific web platform that includes software, tutorials, and other tools to assist companies in their assessments. Conclusion: This methodological proposal is new on the Italian work-related stress risk assessment scene. Besides providing an evaluation approach using scientifically validated instruments, it ensures the active participation of occupational health professionals in each company. The assessment tools provided enable companies not only to comply with the law, but also to contribute to a database for monitoring and assessment and give access to a reserved area for data analysis and comparisons.

A Study on the Safety Assessment Method of the Adversiting Pillar Tower on the Penthouse (옥탑에 설치된 광고탑 구조물의 안전성 평가 기법에 관한 연구)

  • 채원규
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.221-226
    • /
    • 1998
  • In this thesis, the safety assessment method of tile adversiting pillar tower on the penthouse were studied. From the structural analysis results of the adversiting pillar tower, the bending stress, the shearing stress and the axial stress were calculated, and these member forces were applied to the safety assessment of the adversiting pillar tower and the penthouse, respectively.

  • PDF