• Title/Summary/Keyword: stress corrosion cracks

Search Result 132, Processing Time 0.026 seconds

Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy (경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향)

  • Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

Production of SCC Flaws and Evaluation Leak Behavior of Steam Generator Tubes (누설 및 파열실험용 SCC 결함 전열관 제작 및 누설거동 평가)

  • Hwang, Seong-Sik;Jung, Man-Kyo;Park, Jang-Yul;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.188-192
    • /
    • 2009
  • A forced outage due to a steam generator tube leak in a Korean nuclear power plant was reported.1) Primary water stress corrosion cracking has occurred in many tubes in the plant, and they were repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to understand the leak behavior of the tubes containing stress corrosion cracks. Stress corrosion cracks were developed in 0.1 M sodium tetrathionate solution at room temperature. Steam generator(SG) tubes with short cracks were successfully fabricated with a restricted solution contact method. The leak rates of the degraded tubes were measured at room temperature. Some tubes with 100 % through wall cracks showed an increase of leak rate with time at a constant pressure.

PbSCC of Ni-base Alloys in PbO-added Pure Water

  • Kim, Joung Soo;Yi, Yong-Sun;Kwon, Oh Chul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.316-321
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

TECHNIQUES FOR INTERGRANULAR CRACK FORMATION AND ASSESSMENT IN ALLOY 600 BASE AND ALLOY 182 WELD METALS

  • LEE, TAE HYUN;HWANG, IL SOON;KIM, HONG DEOK;KIM, JI HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.102-114
    • /
    • 2015
  • Background: A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. Methods: An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. Results: A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

  • Son, In-Joon;Nakano, Hiroaki;Oue, Satoshi;Kobayashi, Shigeo;Fukushima, Hisaaki;Horita, Zenji
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.275-281
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution ($H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동)

  • 오세욱;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF