• 제목/요약/키워드: stretchable electronic conductor

검색결과 2건 처리시간 0.017초

Electrically Conductive PEDOT:PSS/Acrylamide organogels

  • Lee, Yoo-Yong;Kang, Ho-Young;Gwon, Seok-Hyeon;Choi, Gwang Mook;Lim, Seung-Min;Sun, Jeong-Yun;Joo, Young-Chang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.224-224
    • /
    • 2015
  • Gel have enormous applicable region due to inherently high stretchability and bio-compatibility. Here, we fabricated highly stretchable electronic conductive organogels which have long-term stability in environment. By introducing a dialysis step which can incorporate conducting polymer, PEDOT, on the procedure of gel synthesis, residual ions inside the gel were removed. In addition, we replaced the water with organic solvent, EG, inside the gels which is high stability in air. Unlike conventional hydrogels, there are no ionic conduction occurred and electrochemically driven current was prevented during electrical voltage was applied. The fabricated organogels are hardly dried during air exposure, and only electrically conductive without any electrochemical reaction at even high voltage. In order to utilize as stretchable conductor, we demonstrated a LED array circuit using the conductive organogels as electrical interconnects. It was successfully operative even stretched up to 300% strain.

  • PDF

Recent Progress on Ionically Conductive Polymer Electrolyte for Electronic Skin Sensors

  • Kim, Jeong Hui;Jeong, Jung-Chae;Lee, Keun Hyung
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.117-123
    • /
    • 2021
  • Electronic skin (or E-skin) is an artificial smart skin composed of one or more than two sensors. E-skins detect external stimuli and convert them into electrical signals. Various types of E-skin sensors exist, including mechanical, physical, and chemical, depending on the detection signals involved. For wearable E-skins with superior sensitivity and reliability, developing conductors that possess both good elasticity and sensitivity is essential. Typical electrical conductors used in these sensors show very high sensitivity, but they have drawbacks such as non-linearity, irreversibility, and a narrow sensing range. To address these issues, stretchable and lightweight ionic conductors have been actively used in E-skin applications. This study summarizes the recent progress on various types of ionic conductors and ionic-conductor-based E-skin sensors.