• Title/Summary/Keyword: structural design sheets

Search Result 82, Processing Time 0.023 seconds

Data Model for XML-Based Digitalization of Structural Design Sheets (XML 기반의 구조계산서 전자화를 위한 자료모델)

  • Jung Jong-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.483-489
    • /
    • 2006
  • This study describes the XML -based digitalization of structural design sheets for exchange on the web. For this purpose the data model of the XML document that represents the structural design sheets for buildings, including mathematical expressions and graphics that cannot be easily exchanged on the web, is defined. Then, the prototype that facilitates the web-based exchange of the XML documents is developed and the feasibility of the results of this study is discussed.

  • PDF

XML-Based Digitalization of Structural Design Sheets for RC Buildings (XML을 이용한 철근콘크리트 건물 구조계산서 전자화)

  • Jung Jong-Hyun;Kang Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.435-443
    • /
    • 2005
  • This study describes the XML-based digitalization of structural design sheets for RC buildings to exchange on the web. For this purpose, first, the data structure of XML document that represents the structural design skeets, including mathematical expressions and graphics that cannot be easily exchanged on the web, is defined. Then, the presentation of the XML documents on the web is discussed. The prototype that facilitates the web-based exchange of the XML documents we developed and the feasibility of the results of this study is discussed.

Development of an Integrated Design Automation System for Retaining Wall Structures (옹벽 구조물을 위한 설계 자동화 통합 시스템 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Kim, Do;Lee, Min-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.294-299
    • /
    • 2008
  • Nowadays there are numerous factors to design the structure even for simple one, but many parts of the work are similar to the existing or repeated simply. In this case, design of the structure is unnecessarily needed lots of effort and time. To solve difficulties of design, an integrated design automation system for retaining wall structures that widely used is developed. The automation system consists of following items, 1) XML data structure between modules, 2) CAD visualization system to provide drawing sheets, 3) excel solution to provide structural design sheets and bills of quantity, 4) design logic to analysis and calculate behaviors of structure, and 5) GUI to represent data and results for the program.

  • PDF

Flexural Behavior of Reinforced Concrete Beams with Strengthening Length of Carbon Fiber Sheets (탄소섬유쉬트의 보강길이에 따른 R/C보의 휨 거동)

  • Shin, Sung Woo;Ahn, Jong Mun;Lee, Kwang Soo;Ban, Byung Lyul;Yeom, Sung Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 1998
  • It is demanded to obtain the design data for bond length of the strengthening carbon fiber sheets. An objectives of this study is to provide preliminary data of rational strengthening design method which is adequate to current domestic status. The present experimental study was performed to evaluate flexural strengthening effects of steel reinforced concrete beams strengthened with carbon fiber sheets. Following conclusions can be extracted. It is revealed that the maximum load carrying capacity is increased up to 9% when the reinforced concrete beams were strengthened with 1-ply of carbon fiber sheet which is half-width of beam. The performance of reinforced concrete sections were improved due to the strengthening carbon fiber sheets on the tensile side of beams. It is believed that the strengthening length of carbon fiber sheets must be provided as (0.5l+3d) to secure the ductile capacity of above three for the flexural strengthening of reinforced concrete beams.

  • PDF

Effect of Multi-Layer Carbon Fiber Sheet Used for Strengthening Reinforced Concrete Beams

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.149-155
    • /
    • 2005
  • The purpose of this study is to investigate the flexural strengthening effects of CF(Carbon Fiber) sheet for the full-scale RC beams with multi-layer CF sheets. The partial strength reduction factors of CF sheets are suggested from the full-scale RC beams tests strengthened with multi-layer CF sheets up to six layers as well as material tests. From the material tensile tests, it was observed that the average tensile strengths of CF sheets per layer are decreased as the number of CF sheets is increased. Also the steep strength reductions of CF sheets in material test results at rupture are observed compared with the structural tests results for the full-scale RC beams strengthened with multi-layer CF sheets. Finally, the partial strength reduction factors far CF sheets up to six layers are suggested considering the effects of multi-layer and unit weight of CF sheets.

Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading (단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구)

  • Park, Jeong Yong;Kim, Seong Do;Cho, Baik Soon;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 2006
  • This study deals with the response of reinforced concrete beams strengthened with carbon fiber sheets. Test beams are subjected to static loading and repeated loading. Based on the static test results of the RC beams strengthened with carbon fiber sheets, repeated loading tests are performed. The variables of repeated loading test are composed of the number of carbon fiber sheets, the existence of U-shaped band at the end for anchoring, and loading rate of repeated loading, etc. Test results show the flexural behavior, the characteristics of strength, the characteristics of ductility, the change of flexural rigidity, and the amount of energy loss of RC beams under monotonic incremental loading and repeated loading. The failure strain of carbon fiber sheets is also estimated under repeated loading. From the experimental results, this work presents a basis of the data needed to analyze and design the static and dynamic flexural response of RC beams strengthened with carbon fiber sheets.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

Structural Design Optimization of the Aluminum Space Frame Vehicle (알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법)

  • Kang, Hyuk;Kyoung, Woo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

Considerations in the Safety Evaluation of the Lateral Structural Members Reinforced with Steel Plate or CFRP Sheet (강판 또는 탄소섬유시트 보강된 수평 구조 부재의 안전성 평가시 고려사항)

  • 강석원;박형철;오보환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.331-334
    • /
    • 2003
  • Since regulation or specification for the reinforcing method are quite ambiguous, structural design for the reinforcement can be subjectively and arbitrarily conducted. Thus, reasonable limitation and guide for the quantity of the reinforcement are required for the safe use of the structure after repair. In order to guarantee the safety of the structural member several items should be considered; reinforcing limit to avoid the brittle failure, least required strength of the existing member before reinforcement in order not to fail under the new serviceability load condition when reinforcing steel plates or CFRP sheets are harmed or subjected to fire.

  • PDF