• Title/Summary/Keyword: structural steel welds

Search Result 56, Processing Time 0.026 seconds

Study on Cooling Characteristic Improvement in Underwater Wet Arc Welding of TMCP Steelplate (TMCP강의 습식수중 아크용접부의 냉각특성 개선에 관한 연구)

  • 김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.113-124
    • /
    • 1992
  • The offshore industry created a need for quality wet weld repairs. Wet welding is a fast method of repair providing sound, structural quality welds. It requires less support equipment than a similar underwater dry weld repair or the alternative mechanical connections. Compared to welds made in air, underwater wet welds are plagued by increased hardness due to rapid quenching by the surrounding water. In this paper is described the experimntal study of improving the cooling rates of wet welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows : By shielding around weld arc surrounding, the cooling rates resulting from wet welds on TMCP steel plate could be lower than that of nonshielded wet welds and the fesibility on high quality of mecanical properties of wet weld on TMCP steel plate was carried out with shielded weld arc surrounding.

  • PDF

Fatigue Crack Propagation Life of Partially Penetrated Butt Welds in High Strength Steel (고장력 강판 부분용입 맞대기 용접부의 피로균열진전수명 평가)

  • Han, Seung-Ho;Shin, Byung-Chun;Lee, Woong;Choi, Jeon-Ho
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Fatigue behaviour of partially penetrated butt-welded joints in high strength steel plates, in which crack-like structural defect, i.e. lack of penetration(LOP), is inevitably introduced during welding processes, was investigated. Fatigue lives of two types of welded joints, namely X-grooved and K-grooved joints, were experimentally determined first. Observed fatigue crack propagation behaviours of the partially penetrated butt-welds were interpreted through considering 3-dimensional semi-elliptical crack shape in front of the LOP. Based on such interpretation, a fracture mechanical method to estimate stress intensity factors at the crack tip was proposed. Since the fatigue lift of the partially penetrated butt-welds was strongly influenced by the ratio of size of the LOP to thickness, D/t, the D/t was used as a main parameter to calculate the fatigue lift by using the proposed method. Comparison of the fatigue lift obtained experimentally and analytically agreed well with each other. Hence it is suggested that the method used in this work to predict fatigue lift of the partially penetrated butt-welds can be applied to real cases with improved lift-prediction capability.

Evaluation of Mechanical Properties with Thermal Aging in CF8M/SA508 Welds (CF8M과 SA508 용접재의 열화거동과 기계적특성 평가)

  • 우승완;최영환;권재도
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1968-1973
    • /
    • 2004
  • Structural degradations are often experienced on the components of nuclear power plants in reactor pressure vessels (RPV) and steam generators (SG) when these components are exposed to high temperature and high pressure for a long period of time. Such conditions result in the change of microstructures and of mechanical properties of materials, which requires an evaluation of the safeguards related to structural integrity. In a primary reactor cooling system (RCS), a dissimilar weld zone exists between cast stainless steel (CF8M) in a pipe and low-alloy steel (SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time under the operating temperature between 290 and 33$0^{\circ}C$. Under the same conditions, it is well known that degradation is not observed in low alloy steel. An investigation of the effect of thermal aging on the various mechanical properties of the dissimilar weld zone is required. The purpose of the present investigation is to find the effect of thermal aging on the dissimilar weld zone. The specimens are prepared by an artificially accelerated aging technique maintained for various times at 43$0^{\circ}C$, respectively. Then, The various mechanical test for the dissimilar welds are performed.

A study on the fatigue strength characteristics of ship structural steel with gusset welds

  • Park, Sung-Jo;Lee, Hyun-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.132-140
    • /
    • 2012
  • This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.

Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves

  • Choi, Sungho;Cho, Hwanjeong;Lissenden, Cliff J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.890-898
    • /
    • 2018
  • Nondestructive inspection (NDI) is an integral part of structural integrity analyses of dry storage casks that house spent nuclear fuel. One significant concern for the structural integrity is stress corrosion cracking in the heat-affected zone of welds in the stainless steel canister that confines the spent fuel. In situ NDI methodology for detection of stress corrosion cracking is investigated, where the inspection uses a delivery robot because of the presence of the harsh environment and geometric constrains inside the cask protecting the canister. Shear horizontal (SH) guided waves that are sensitive to cracks oriented either perpendicular or parallel to the wave vector are used to locate welds and to detect cracks. SH waves are excited and received by electromagnetic acoustic transducers (EMATs) using noncontact ultrasonic transduction and pulse-echo mode. A laboratory-scale canister mock-up is fabricated and inspected using the proposed methodology to evaluate the ability of EMATs to excite and receive SH waves and to locate welds. The EMAT's capability to detect notches from various distances is evaluated on a plate containing 25%-through-thickness surface-breaking notches. Based on the results of the distances at which notch reflections are detectable, NDI coverage for spent nuclear fuel storage canisters is determined.

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints (용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성)

  • Lee, Chin Hyung;Shin, Hyun Seop;Park, Ki Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.693-700
    • /
    • 2012
  • In this study, the Charpy impact test along with metallurgical observation was conducted to evaluate low temperature impact toughness of structural steel welds with different welding processes to find out the optimal welding process to guarantee the required impact toughness at low temperatures. The welding processes employed are shield metal arc welding (SMAW) and flux cored arc welding(FCAW), which are commonly used welding methods in construction. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. To investigate the impact toughness at low temperatures of the steel welds, specimens were extracted from the weld metal and the heat affected zone. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The low temperature impact performance was evaluated based on the correlation between the absorbed energy and the microstructure. Analysis of the results showed that the optimal welding process to ensure the higher low temperature impact toughness of the HAZ and the weld metal is SMAW process using the welding consumable for steels targeted to low temperature use.

Effect of heat treatment on mechanical properties of overlay welds (육성 용접부의 기계적 성질에 미치는 열처리조건의 영향)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF

Establishment of An Optimal Process to Improve Structural Integrity by Investigating Effect of the Process Variables on Fatigue Lifetime of Steel-Sleeve Repair Welds in Buried Gas Pipeline (매설가스배관 강 슬리브 보수 용접부의 피로수명에 미치는 공정변수 영향 고찰을 통한 최적공정 수립)

  • Kim, Jong Sung;Lee, Cheol;Kim, Woo Sik;Kim, Ik Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1021-1033
    • /
    • 2017
  • In this study, an optimum process to improve structural integrity was established by investigating effect of the process variables on fatigue lifetime of steel-sleeve repair welds in buried gas pipeline. Residual stresses in the repair welds were derived through sequentially-coupled temperature-stress analysis using ABAQUS, which is a commercial finite element analysis program. In addition, variations of operating stresses were derived by finite element linear elastic stress analysis. Fatigue lifetimes of the steel-sleeve repair welds were evaluated by substituting the derived weld residual stresses and operating stress variations into the structural stress/fracture mechanics approach as input. Parametric study using finite element analysis and fatigue assessment for various repair welding process variables were carried out to investigate the effects of the process variables on the fatigue lifetime. Finally, based on the effects of the process variables on the fatigue lifetime, an optimal process to minimize the welding time and economic costs and to improve the fatigue lifetimes was derived.

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF