• Title/Summary/Keyword: sub antenna

Search Result 248, Processing Time 0.024 seconds

Effects of Tilting and Bending on Embroidered Dipole Array Antenna (자수된 다이폴 어레이 안테나에 미치는 기울임과 굽힘의 영향)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • In this paper, we investigated the effect of tilting and bending of an 2.45GHz ISM band embroidered dipole array antenna due to the human body movement. The antenna characteristics showed larger variations in tilting on the X-axis than the Y-axis. The antenna gain varied by 0.25[dB] when the antenna tilted by 3.5°. As tilting angle increased the operating frequency(fo) showed decreasing tendency and the return loss(S11) showed increasing tendency. The antenna characteristics also showed more variation in bending on the X-axis than the Y-axis. As bending the antenna the antenna characteristics affected much more in bending on the X-axis than the Y-axis. The antenna gain varied by 3.73[dB] as the curvature(1/R_rad) increased by 0.04[mm-1]. As it bended more the operating frequency(fo) showed decreasing and then increasing tendency and the return loss(S11) showed increasing tendency.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Miniaturization of GPS Microstrip Antenna for Small Drone (초소형 드론 탑재용 GPS 대역 마이크로스트립 안테나의 소형화)

  • Kim, Wan-Ki;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, a miniaturized GPS band(L1 : 1.575 GHz) antenna that can be mounted on a small drone is proposed. The miniaturization was designed by applying the perturbation method based on the λ/4 microstrip antenna and lengthening the current path at the edge of the patch. The miniaturized antenna was fabricatred such that it could be attached to the surface of styrofoam(εr=1.06, t=10 mm) having a size of 10 mm × 9 mm × 10 mm (0.05 λ × 0.05 λ × 0.05 λ). The thickness and length of the feeding line and the spacing between short stubs were adjusted for impedance matching. S11 was found to be -18.8 dB at the center frequency of the fabricated antenna, 1.575 GHz. The radiation pattern measurement results show that the maximum gain of Eθ is 1.87 dBi in 0 directions in the xz-plane, and that Eθ is an omnidirectional characteristic with an average gain of -1.7 dBi in the yz-plane. It was found that the antenna can be used as an ultra-small microstrip antenna, which can be mounted on a small dron for GPS, and is capable of preserving a reduction ratio of 98.8% as compared to a λ/2 microstrip patch antenna.

An Amplitude Comparison Direction-Finding Antenna Assembly for Mounting on a Small Flight Vehicle (소형 비행체 탑재를 위한 크기 비교용 방향 탐지 안테나 조립체)

  • Kim, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.459-465
    • /
    • 2020
  • In this paper, a compact antenna assembly for an amplitude comparison direction-finding(DF) method for a small flight vehicle is presented. Designed antenna assembly consists of four antennas and it is mounted on a radius of 1.45 λc where λc corresponds to the wavelength of the center frequency. To achieve compactness and robustness of the assembly, the elements are fed by end-launch feeding method and have modified aperture shapes of E- or H-sectoral horns. The feeding part consists of SMA connector, stepped impedance matching structure, and square waveguide of 0.6 λc × 0.6 λc. To achieve different main beam directions for every antenna which is required condition for amplitude comparison DF method, all apertures of the antennas are inclined and it makes the main beam direction of each antenna to top, bottom, left, and right with respect to the axis of the platform. To verify the validation of DF performance of the presented antenna assembly, amplitude comparison curves using measurement results are presented. The bandwidth of the antennas are above 3.2 % in Ku-band(VSWR ≤ 2:1).

Triple Folded Omnidirectional Microstrip Antenna for GBAS (GBAS용 3중 폴디드 무지향성 마이크로스트립 안테나)

  • Ju, Dae-Keun;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.83-94
    • /
    • 2021
  • In this paper, we proposed a microstrip antenna (center frequency 118 MHz) with an omnidirectional radiation pattern that can replace the antennae used in VDB systems in GBAS. First, to obtain an omnidirectional radiation pattern from a microstrip antenna, we constructed a folded antenna. We then designed a miniaturized triple-folded antenna using perturbation effects. Thus we obtained suitable characteristics with a S11 of -13.91dB, -10 dB bandwidth of 1.5 MHz (1.27%) in the center frequency of 118 MHz. Furthermore, in the yz-plane and xy-plane, the component exhibits an omnidirectional radiation pattern, and the size of the antenna achieves miniaturization of 64.2% compared to the reference antenna. Finally, it is suitable as an antenna for VDB systems in GBAS.

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

Broadband Main and Sub Antenna Connected by the Transmission Line (전송선으로 연결된 광대역 주, 부 안테나)

  • Park, Mingil;Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.42-49
    • /
    • 2014
  • A broadband antenna using a main and a sub antenna for the mobile communication terminal such as mobile phone and ITS terminal is designed. Two antennas are based on the hybrid antenna that is operating both a monopole and a IFA(Inverted F Antenna). It's applied the transmission line to connect both antennas. Sub antenna located in small space of the terminal allows space usability for the terminal design. Antenna for the hexa-frequency band of LTE700, CDMA, GSM, DCS, PCS and WCDMA is designed and implemented on the bare PC board that is same size of the mobile phone. This antenna was measured 3 : 1 VSWR over the whole design band. And average gains and efficiencies were-3.78 ~ -2.62dBi and 41.9 ~ 54.73% for LTE700/CDMA/GSM frequency band, -3.75 ~ -1.84dBi and 42.19 ~ 65.46% for DCS/PCS/WCDMA frequency band.

Design of 24GHz Patch Array Antenna for Detecting Obstacles (장애물 감지용 24GHz 대역 패치 배열 안테나 설계)

  • Lee, Kwang;Kim, Young-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1075-1080
    • /
    • 2021
  • In this paper, we designed a 24.4GHz 2-channel TX and 4-channel RX patch array antenna mounted on a short-range vehicle radar system to simultaneously measure the range and speed of a single object within a single measurement cycle. The antenna was designed and fabricated using Rogers' RO4350B(εr=3.48, 0.5T) board. Through measurement, it was confirmed that the design specifications of antenna gain (> 10dBi or more) and radiation pattern (Elevation HPBW > 10deg.) were satisfied at 24.4 GHz frequency.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

High Efficiency Tapered Waveguide Antenna for End-fire Optical Phased Array Device (종단방출형 광위상배열 장치를 위한 고효율 안테나)

  • Byeongchan Park;Nan Ei Yu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.235-240
    • /
    • 2023
  • The optical signal injected into an end-fire optical phased array propagates along the waveguides inside the device and is emitted from the edge of the antenna. In general, reflection and scattering occur at the boundary, thereby reducing the emission efficiency of the optical signal. In this article, we propose a silicon nitride (Si3N4) tapered waveguide antenna structure whose width is tapered toward the emitting edge, achieving high emission efficiency operating at the 1,550 nm wavelength. The Si3N4 tapered waveguide antenna was numerically designed using the 3D finite-difference time-domain method. The optical signal emission efficiency increased from 78% to 96.3%, while reflectance decreased from 22% to 3.7% compared with the untapered waveguide antenna counterpart. This result will not only boost the optical signal intensity but also mitigate optical noise resulting from back reflection along the waveguide in the end-fire optical phased array device.