• Title/Summary/Keyword: subpixel

Search Result 73, Processing Time 0.033 seconds

Super Resolution Image Reconstruction Using Phase Correlation Based Subpixel Registration from a Sequence of Frames (위상 상관(Phase Correlation)기반의 부화소 영상 정합방법을 이용한 다중 프레임의 초해상도 영상 복원)

  • Seong, Yeol-Min;Park, Hyun-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.481-484
    • /
    • 2005
  • Inherent opportunities on research for restoring high resolution image from low resolution images are increasing in these days. Super resolution image reconstruction is the process of combining multiple low resolution images to form a higher resolution one. To achieve super resolution reconstruction, proper observation model which is based on subpixel shift information is required. In this context, the importance of the subpixel registration cannot be estimated because subpixel shift information cannot be obtained from original image. This paper presents a regularized adaptive super resolution reconstruction method based on phase correlated subpixel registration, where the Constrained Least Squares(CLS) Restoration is adopted as a post process.

  • PDF

An Accurate Edge-Based Matching Using Subpixel Edges (서브픽셀 에지를 이용한 정밀한 에지기반 정합)

  • Cho, Tai-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.493-498
    • /
    • 2007
  • In this paper, a 2-dimensional accurate edge-based matching algorithm using subpixel edges is proposed that combines the Generalized Hough Transform(GHT) and the Chamfer matching to complement the weakness of either method. First, the GHT is used to find the approximate object positions and orientations, and then these positions and orientations are used as starting parameter values to find more accurate position and orientation using the Chamfer matching with distance interpolation. Finally, matching accuracy is further refined by using a subpixel algorithm. Testing results demonstrate that greater matching accuracy is achieved using subpixel edges rather than edge pixels.

Estimation of Real Boundary with Subpixel Accuracy in Digital Imagery (디지털 영상에서 부화소 정밀도의 실제 경계 추정)

  • Kim, Tae-Hyeon;Moon, Young-Shik;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.16-22
    • /
    • 1999
  • In this paper, an efficient algorithm for estimating real edge locations to subpixel values is described. Digital images are acquired by projection into image plane and sampling process. However, most of real edge locations are lost in this process, which causes low measurement accuracy. For accurate measurement, we propose an algorithm which estimates the real boundary between two adjacent pixels in digital imagery, with subpixel accuracy. We first define 1D edge operator based on the moment invariant. To extend it to 2D data, the edge orientation of each pixel is estimated by the LSE(Least Squares Error)line/circle fitting of a set of pixels around edge boundary. Then, using the pixels along the line perpendicular to the estimated edge orientation the real boundary is calculated with subpixel accuracy. Experimental results using real images show that the proposed method is robust in local noise, while maintaining low measurement error.

  • PDF

A 3D BGA Inspection Algorithm with Subpixel Accuracy (부화소 정밀도를 가지는 3차원 BGA 검사 알고리즘)

  • 김정훈;박성한;심영석
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.507-510
    • /
    • 1999
  • Inspection of BGAs presents several challenges for modem measurement equipment. No only must these systems be fast and accurate, they must deal with the special challenges presented by very small shiny metal spheres. For accurate measurement, we propose an algorithm which fits for estimating the accurate ball height using 2-D curve-fitting algorithm. The real boundary between two adjacent pixels and the real ball diameter are measured with subpixel accuracy Experimental results show that the proposed method calculates the ball height and diameter with subpixel accuracy and is robust in local noise with low measurement error.

  • PDF

Edge detection at subpixel accuracy using fuzzy logic (퍼지 논리를 이용한 Subpixel 정확도 Edge 검출)

  • 김영욱;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.105-108
    • /
    • 1996
  • In this paper, we present an interpolation schema for image resolution enhancement using fuzzy logic. Proposed algorithm can recover both low and high frequency information in image data. In general, interpolation techniques are based on linear operators which are essentially details in the original image. In our fuzzy approach, the operator itself balances the strength of its sharpening and noise suppressing components according to the properties of the input image data. The proposed interpolation algorithm is performed in three step. First logic reasoning is applied to coarsely interpret the high frequency information. These results are combined to obtain the optical output. Using our approach, resolution of the original image can be applied to various kind of image processing topics such as image enhancement, subpixel edge detection, and filtering.

  • PDF

Model-based subpixed motion estimation for image sequence compression (도영상 압축을 위한 모델 기반 부화소 단위 움직임 추정 기법)

  • 서정욱;정제창
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.130-140
    • /
    • 1998
  • This paper presents a method to estimate subpixel accuracy motion vectors using a mathermatical model withoug interpolation. the proposed method decides the coefficients of mathematical model, which represents the motion vector which is achieved by full search. And then the proposed method estimates subpixel accuracy motion vector from achieved mathematical model. Step by step mathematical models such as type 1, type 2, type 3, modified bype 2, modified type 3, and Partial Interpolation type 3 are presented. In type 1, quadratic polynomial, which has 9 unknown coefficients and models the 3by 3 pixel plane, is used to get the subpixel accuracy motion vectors by inverse matrix solution. In type 2 and 3, each quadratic polynomial which is simplified from type 1 has 5 and 6 unknown coefficients and is used by least square solution. Modified type 2 and modified type 3 are enhanced models by weighting only 5 pixels out of 9. P.I. type 3 is more accurate method by partial interpolation around subpixel which isachieved by type 3. LThese simulation results show that the more delicate model has the better performance and modified models which are simplified have excellent performance with reduced computational complexity.

  • PDF

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Stereo Vision System Using Relative Stereo Disparity with Subpixel Resolution

  • Kim, Chi-Yen;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.407-407
    • /
    • 2000
  • For acquisition of 3-Dimensional information in real space, stereo vision system is suitable. In the stereo system, 3D real world position is derived from translation of coordinates between cameras and world. Thus, to use stereo vision, it is needed to construct a precise system which provides kinematically precise translation between camera and world coordinate, in spite of intricacy and hardness. So much cost and time should be spent to build the system. In this paper, facilely to solve previous problem, a method which can easily obtain 3D informations using reference objects and RSD(Relative Stereo Disparity) is proposed. Instead of direct computation of position with translation of coordinates, only relative stereo disparity in stereo pair of image is used to find the reference depth of objects, and real 3D position is computed with initial condition of reference objects. In computation, subpixel resolution is involved to find the display for accuracy. To find the RSD, corresponding points are calculated in subpixel resolution. So the result in experiemnt will be shown that subpixel resolution is more accurate than 1 pixel resolution.

  • PDF

An Improved Subpixel Algorithm for Automated Visual Inspection System (자동 시각 검사를 위한 개선된 서브픽셀 알고리즘)

  • Jang, Dong-Sik;Lee, Man-Hee;Kim, Gil-Dong
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.15-22
    • /
    • 1998
  • A new improved algorithm in edge location to subpixel accuracy using decent-based weight to spatial information is proposed in this paper and applied to automated visual inspection(AVI) system. An application of the new edge operator as an edge detector is also provided and compared with Tabatabai and Lyvers edge detectors. The existing algorithms located edger to subpixel accuracy using least-square or moment-based methods. The algorithms also use only spatial information or grey-level values to locate edges. However, the proposed algorithm consider the weighted sum of grey-levels values of each edge pattern. The results show that the proposed algorithm is relatively less biased and has smaller standard deviation than the edge operations developed by Tabatabai and Lyvers in the presence of noise.

  • PDF

Elemental Image Generation Method with the Correction of Mismatch Error by Sub-pixel Sampling between Lens and Pixel in Integral Imaging

  • Kim, Jonghyun;Jung, Jae-Hyun;Hong, Jisoo;Yeom, Jiwoon;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • We propose a subpixel scale elemental image generation method to correct the errors created by finite display pixel size in integral imaging. In this paper, two errors are mainly discussed: pickup-and-display mismatch error and mismatch error between pixel pitch and lens pitch. The proposed method considers the relative positions between lenses and pixels in subpixel scale. Our proposed pickup method calculates the position parameters, generates an elemental image with pixels completely inside the lens, and generates an elemental image with border pixels using a weighted sum method. Appropriate experiments are presented to verify the validity of the proposed method.