• Title/Summary/Keyword: substrate loss

Search Result 801, Processing Time 0.023 seconds

Analysis of Via Loss Characteristic in Embedded DPDT Switch Using SoP-L Fabrication (SoP-L 공정을 이용한 DPDT 스위치를 임베딩 할 경우 스위치 특성에 영향을 주는 Via의 loss 분석)

  • Mun, Jong-Won;Gwon, Eun-Jin;Ryu, Jong-In;Park, Se-Hoon;Kim, Jun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.557-558
    • /
    • 2008
  • This paper presents the effects of via losses to be connected with an embedded DPDT(Double Pole Double Thru) in a substrate. The substrate consists of two ABF(Ajinomoto Bonding Film) and a Epoxy core. In order to verify and test effects of via, via chains in a substrate using SoP-L process are proposed and measured. Via loss can be calculated as averaging the total via holes. The exact loss of a DPDT switch embedded in substrate are extracted by using the results of via chain and measured data from embedded DPDT. The calculated one via insertion loss is about 0.0005 dB on basis of measured via chains. This result confirms very low loss in via. So the inserti on loss of the embedded switch is confirmed only switch loss as loss is 0.4 dB.

  • PDF

Material Properties Characterization Based on Measurements of Reflection Coefficient and Bandwidth

  • Nguyen, Phuong Minh;Chung, Jae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.382-386
    • /
    • 2014
  • The knowledge of substrate material properties is important in antenna design. We present a technique to accurately characterize the dielectric constant and loss tangent of an antenna substrate based on the measurements of antenna's reflection coefficient and bandwidth. In this technique, an error function is formulated by combinations of the reflection coefficient and bandwidth of measured and simulated data, and then an optimization technique is used to efficiently search for the substrate properties that minimize the error function. The results show that the method is effective in retrieving the dielectric constant and loss tangent of the antenna substrate without the need of additional test fixtures as in conventional substrate characterization methods.

The Effects of Substrate, Metal-line, and Surface Material on the Performance of RFID Tag Antenna

  • Cho, Chi-Hyun;Choo, Ho-Sung;Park, Ik-Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • We investigated the effects of substrate, metal-line, and surface material on the performance of radio frequency identification(RFID) tag antenna using a tag antenna with a meander line radiator and T-matching network. The results showed that readability of the tag antenna with a thin high-loss substrate could be increased so that it was similar to that of a low-loss substrate if the substrate was very thin. The readability of the tag antenna decreased significantly when the metal line was thinner than the skin depth. The readability of the tag also decreased drastically when the tag was attached to high-permittivity high-loss target objects.

Radiation Efficiency Improvement of RFID Tag Antenna for Metallic Objects Printed on Lossy Substrate (손실 기판을 이용한 금속 부착형 RFID 태그 안테나의 복사 효율 향상)

  • Son, Hae-Won;Choi, Won-Kyu;Choi, Gil-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • In this paper, we propose a new antenna design method for RFID tass on metallic surfaces using a low-cost, high-loss substrate such as FR4. The proposed design method highly reduces the substrate loss due to its dielectric loss, and so improves the radiation efficiency of the tag antenna more than double compared with a conventional PIFA(planar inverted-F antenna). The equivalent circuit model of the antenna according to the proposed method was established and its characteristics were analyzed systematically in this paper. The excellency of the proposed design method was verified by the fabrication and measurement of a prototype antenna.

Analysis of transport current loss considering the conductive layer of YBCO wires (도전성이 높은 안정화층을 고려한 YBCO 선재의 전송전류 손실 해석)

  • Kang, Myung-Hun;Han, Byung-Wook;Jung, Du-Young;Lim, Hee-Hyun;Lim, Hyoung-Woo;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.191-193
    • /
    • 2006
  • YBCO wire has a metal substrate to improve the texture structure and highly conductive layers to increase the cryogenic stability. When AC current flows in the YBCO wire, magnetic field which is generated by the AC current magnetizes the metal substrate and induces the eddy current in the stabilizing layer. To examine the effect of the metal substrate and the conducting layer on the transport current loss of YBCO wire, this paper presents the transport current loss of YBCO wire which has metal substrate and conductive layer. YBCO wire with Ni-W substrate and copper layer were chosen as the model HTS wire for numerical calculation. Finite element method has been used to calculate the transport loss and the results of numerical calculation was compared with analytic calculation suggested by Norris.

  • PDF

A study of characteristics of X-band microstrip patch antenna affected b permittivity and electrical thickness of the substrate (기판의 유전율 및 전기적 두께가 X-벤드용 마이크로스트립 패치 안테나의 특성에 미치는 영향에 관한 연구)

  • 박성교;김준현;박종배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.65-81
    • /
    • 1996
  • In this study forty-five X-bnd rectangular microstrip patch antennas fed by microstrip line using ${\lambda}$/4 transformer were fabricated on teflon substrates with low high permittivities and varous thickness (substrate thickness : 0.6 ~ 2.4 mm, permittivities : 2.15 ~ 10.0), and effects of permittivity and electrical thickness on antenna characteristics were studied with measured return loss (1/S$_{11}$) and resonant frequencies. When substrate electrical thickness was greater than 0.060 ${\lambda}_{0}$return loss was very good and genrally more than 20 dB, but resonance characteristics was somewhat unstable. The more than 0.088 ${\lambda}_{0}$ the thickness was, the more unstable it was. As a result, in the rest range except 12, 13 GHz we had very good mesured return loss iwth greater than 20 dB, and in the range 7 to 9 GHz resonant frequencies were within $\pm$2 % error, on ${\epsilon}_{r}$=5.0, height = 2.4 mm substrate.

  • PDF

A New Broadband Microstrip-to-SIW Transition Using Parallel HMSIW

  • Cho, Dae-Keun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • In this work, a new microstrip-to-substrate integrated waveguide (SIW) transition using the parallel half-mode substrate integrated waveguide (HMSIW) is proposed. The proposed transition consists of three sections : a microstrip, parallel HMSIWs, and an SIW. By inserting the parallel HMSIWs section between the microstrip section and the SIW section, the proposed transition can improve the return loss characteristics of the near cut-off frequency because the HMSIWs section has a lower cut-off frequency than the SIW section (8.6 GHz). The lower cut-off frequency is achieved through gradual electromagnetic field mode changes for a low reflection. The measured return loss is less than 20 dB in the of 9.1~16.28 GHz freqeuncy range for the back-to-back transition. The measured insertion loss is within 1.6 dB for the back-to-back transition. The proposed transition is expected to play an important role in wideband SIW circuits fed by a microstrip.

Comparison of Band Pass Filter Performance Using Liquid Crystal Polymer Substrate in Millimeter-Wave Band (밀리미터파 대역에서 액정 폴리머(Liquid Crystal Polymer) 기판을 이용한 대역통과필터 비교)

  • Oh, Yeonjeong;Lee, Jaeyoung;Choi, Sehwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2021
  • In this paper, two types of BPF(Band Pass Filter) which are hair-pin and interdigital have been designed for millimeter-wave application using two types of material which are LCP(Liquid Crystal Polymer) and PTFE(Polytetrafluoroethylene) and also, their performances such as bandwidth, insertion loss, and in-band flatness are compared. The proposed BPF are designed as third-order filters, and their pass band is from 26.5 GHz to 27.3 GHz. Interdigital BPF using PTFE substrate has most wide -3 dB S21 bandwidth of 7.8 GHz and hair-pin BPF using LCP substrate has most narrow -3 dB S21 bandwidth among the proposed four BPF. For in-band insertion loss, hair-pin BPF using PTFE substrate achieves low insertion loss better than -0.667 dB, and hair-pin BPF using LCP substrate exhibits relatively high insertion loss among the proposed four BPF better than -0.937 dB. However, the maximum difference in insertion loss performance among the proposed four BPF is 0.27 dB, which is too small to negligible. For in-band flatness, interdigital BPF using PTFE substrate shows greatest performance of 0.017 dB, and hair-pin BPF using LCP substrate exhibits the lowest performance of 0.07 dB. There are tiny difference in in-band flatness performance of 0.053 dB. As a results, it is considered that the BPF using LCP substrate can derive the performances similar to that of the BPF using PTFE substrate in Millimeter-wave band.

Wideband propagation characteristics analysis of a microstrip transmission line on FR-4 composite substrate (FR-4 composite 기판을 이용한 microstrip 전송선의 광대역 전송 특성 해석)

  • 홍정기;김영국;이해영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.69-77
    • /
    • 1996
  • We analyzed wideband propagation characteristics of a microstrip transmission line based on FR-4 composite substrate using the wideband complex dielectric constant model and the phenomenological loss equivalence method. The loss calculated by constant relative permittivity and loss tangent is greatly overestimatd compared to that calculated by the frequency-dependent complex relative permittivity. This wideband analysis can be helpful to characterize high-speed and high-density transmission lines associated with the wideband dielectric characteristics and shows that the FR-4 composite substrate has high potential of high frequency circuit applications in terms o fthe propagation loss.

  • PDF

High Performance RF Passive Integration on a Si Smart Substrate for Wireless Applications

  • Kim, Dong-Wook;Jeong, In-Ho;Lee, Jung-Soo;Kwon, Young-Se
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • To achieve cost and size reductions, we developed a low cost manufacturing technology for RF substrates and a high performance passive process technology for RF integrated passive devices (IPDs). The fabricated substrate is a conventional 6" Si wafer with a 25${\mu}m$ thick $SiO_2$ surface. This substrate showed a very good insertion loss of 0.03 dB/mm at 4 GHz, including the conductive metal loss, with a 50 ${\Omega}$ coplanar transmission line (W=50${\mu}m$, G=20${\mu}m$). Using benzo cyclo butene (BCB) interlayers and a 10 ${\mu}m$ Cu plating process, we made high Q rectangular and circular spiral inductors on Si that had record maximum quality factors of more than 100. The fabricated inductor library showed a maximum quality factor range of 30-120, depending on geometrical parameters and inductance values of 0.35-35 nH. We also fabricated small RF IPDs on a thick oxide Si substrate for use in handheld phone applications, such as antenna switch modules or front end modules, and high-speed wireless LAN applications. The chip sizes of the wafer-level-packaged RF IPDs and wire-bondable RF IPDs were 1.0-1.5$mm^2$ and 0.8-1.0$mm^2$, respectively. They showed very good insertion loss and RF performances. These substrate and passive process technologies will be widely utilized in hand-held RF modules and systems requiring low cost solutions and strict volumetric efficiencies.

  • PDF