• Title/Summary/Keyword: subtended angle

Search Result 40, Processing Time 0.025 seconds

Parametric Study of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 파라미터 연구)

  • Son, Byung-Jik;Jung, Dae-Suck
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Free Vibrations of Stepped Circular Arcs (불연속 변단면을 갖는 원호 곡선부재의 자유진동)

  • 오상진;진태기;최규문;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.429-434
    • /
    • 2002
  • The differential equations governing in-plane free vibrations of stepped circular arcs, including the effects of axial deformation, rotatory inertia and shear deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the clamped-clamped symmetric and unsymmetric circular arcs with thickness varying in a discontinuous fashion. The lowest four natural frequencies and mode shapes are presented over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF

Pulsar Binary Birthrates with Spin-Opening Angle Correlations

  • Kim, Chung-Lee;O'Shaughnessy, Richard
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's beam geometry defined by the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. The current estimates for pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e., PSRs B1913+16 and B1534+12. In this work, we revisit the observed pulsar binaries to examine the sensitivity of birthrate predictions to different assumptions regarding the pulsar beam geometry. The results show that, for those pulsars without any direct beam geometry constraints, the estimated beaming correction factor is likely to be smaller than six, a canonically adopted value when calculating birthrates of Galactic pulsar binaries. The median birthrate estimates for pulsar-white dwarf and pulsar-neutron star binaries in the Galactic disk, based on the best observational constraints, are 34 per Myr and 89 per Myr, respectively.

  • PDF

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

Thermal Buckling Characteristics of Composite Conical Shell Structures

  • Woo, Ji-Hye;Rho, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Thermal Buckling and free vibration analyses of multi-layered composite conical shells based on a layerwise displacement theory are performed. The Donnell's displacement-strain relationships of conical shell structure are applied. The natural frequencies are compared with the ones existing in the previous literature for laminated conical shells with several cone semi-vertex angles. Moreover, the thermal buckling behaviors of the laminated conical shell are investigated to consider the effect of the semi-vertex angle, subtended angle, and radius to thickness ratio on the structural stability.

Parametric Analysis of Laminated Composite Umbrella-type Shell Roofs (우산형 쉘 지붕의 파라미터 해석)

  • Byung-Jik, Son;Park, Weon-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.114-119
    • /
    • 2006
  • In this study, laminated composite umbrella type roofs structures such as stadium, exhibition, auditorium and museum are analyzed. These structures have not been dealt with so far because of the difficulty in modeling. These have been analyzed mostly by a simplified method or a grid analysis in design. In this study, better results can be obtained by using shell element. The behavior of umbrella type shell roof under self weight is analyzed for various parameters such as the influence of diaphragm, diaphragm type, ${\gamma}-angle$ type, height/chord ratio of segment, slope of roofs, number of conical segment and subtended angle.

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.