• Title/Summary/Keyword: sun line of sight vector

Search Result 6, Processing Time 0.017 seconds

Calibration of Low-cost Inertia Navigation System with Sun Line of Sight Vector (태양시선벡터를 이용한 저가 관성항법시스템의 보정)

  • Jang, Se-Ah;Choi, Kee-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.774-778
    • /
    • 2008
  • The inaccuracy of inertial sensors used in low cost IMU's limits the usage to ARS, at best. Sensor fusion technologies are widely used to overcome this problem. GPS is the most popular secondary sensor, but GPS alone cannot fully compensate the IMU errors in the initial alignment process and rectilinear flights. This paper presents a new concept of aiding the low cost IMU with the sun line of sight vector. The simulation and experimental results in this paper proves that aiding of INS/GPS with the sun line of sight vector increases the observability and improves accuracy remarkably.

별 가시도 해석을 이용한 별 추적기의 최적 배치 결정

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Gi-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-76
    • /
    • 2005
  • In this study, star visibility analysis of a star tracker is performed by using a statistical apprach. The probability of the Sun and the Earth proximity, the solar array masking probability, and the solar array blinding probability by the Sun light are obtained from the arbitrary chosen satellite positions as a function of a line of sight vector of the star tracker in several satellite attitude modes. This analysis demonstrates that the optimized star tracker accomodations can be determined to be an elevation angle -40o and two azimuth angles $-35^{circ}$ and $-150^{circ}$.

  • PDF

Relationships between the measures of GPS positioning error (GPS 위치결정 오차의 평가척도 사이의 관계)

  • Park, Chan-Sik;Kim, Il-Sun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • In GPS (Global Positioning System) positioning, various measures can be used to select satellites or to evaluate the positioning results. Among these, GDOP (Geometric Dilution of Precision) and RGDOP (Relative GDOP) are the most frequently used. Although these measures are frequently used, the relationship between them is not clearly known. Moreover, the condition number is used as a traditional measure of numerical stability in solving linear equations. Sometimes, the volume of a tetrahedon made by the line of sight vector is used for simplicity. All of these measures share some common properties as well as differences. The relationships between these measures are analyzed in this paper.

  • PDF

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

Analysis on Line-Of-Sight (LOS) Vector Projection Errors according to the Baseline Distance of GPS Orbit Errors (GPS 궤도오차의 기저선 거리에 따른 시선각 벡터 투영오차 분석)

  • Jang, JinHyeok;Ahn, JongSun;Bu, Sung-Chun;Lee, Chul-Soo;Sung, SangKyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.310-317
    • /
    • 2017
  • Recently, many nations are operating and developing Global Navigation Satellite System (GNSS). Also, Satellite Based Augmentation System (SBAS), which uses the geostationary orbit, is operated presently in order to improve the performance of GNSS. The most widely-used SBAS is Wide Area Augmentation System (WAAS) of GPS developed by the United States. SBAS uses various algorithms to offer guaranteed accuracy, availability, continuity and integrity to its users. There is algorithm for guarantees the integrity of the satellite. This algorithm calculates the satellite errors, generates the correction and provides it to the users. The satellite orbit errors are calculated in three-dimensional space in this step. The reference placement is crucial for this three-dimensional calculation of satellite orbit errors. The wider the reference placement becomes, the wider LOS vectors spread, so the more the accuracy improves. For the next step, the regional features of the US and Korea need to be analyzed. Korea has a very narrow geographic features compared to the US. Hence, there may be a problem if the three-dimensional space method of satellite orbit error calculation is used without any modification. This paper suggests a method which uses scalar values to calculate satellite orbit errors instead of using three-dimensional space. Also, this paper proposes the feasibility for this method for a narrow area. The suggested method uses the scalar value, which is a projection of orbit errors on the LOS vector between a reference and a satellite. This method confirms the change in errors according to the baseline distance between Korea and America. The difference in the error change is compared to present the feasibility of the proposed method.

Thermal pointing error analysis of the observation satellites with interpolated temperature based on PAT method (PAT 기반 온도장 보간을 이용한 관측위성의 열지향오차해석)

  • Lim, Jae Hyuk;Kim, Sun-Won;Kim, Jeong-Hoon;Kim, Chang-Ho;Jun, Hyoung-Yoll;Oh, Hyeon Cheol;Shin, Chang Min;Lee, Byung Chai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.80-87
    • /
    • 2016
  • In this work, we conduct a thermal pointing error analysis of the observation satellites considering seasonal and daily temperature variation with interpolated temperature based on prescribed average temperature (PAT) method. Maximum 200 degree temperature excursion is applied to the observation satellites during on-orbit operation, which cause the line of sight (LOS) to deviate from the designated pointing direction due to thermo-elastic deformation. To predict and adjust such deviation, the thermo-elastic deformation analysis with a fine structural finite element model is accomplished with interpolated thermal maps calculated from the results of on-station thermal analysis with a coarse thermal model. After verifying the interpolated temperatures by PAT with two benchmark problems, we evaluate the thermal pointing error.