• Title, Summary, Keyword: super absorbent polymer

Search Result 26, Processing Time 0.031 seconds

Study on the Characteristics of the Absorbency Silicone by Super Absorbent Polymers (고흡수성 수지를 이용한 흡수성 실리콘의 특성 연구)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Silicone resin has no water-absorbing function because it is a strong hydrophobic polymer. However, addition of super absorbent polymer gives much better absorbency than that of conventional silicone resin. In this study, we developed novel silicone materials with water-absorbing function by choosing three types of amorphous acrylic super absorbent polymers with different particle sizes, determining the mixing ratio of the three polymers and applying the mixtures into two-component type silicone material for medical purpose. The change in the mechanical properties such as tensile strength, tear strength, compressive strength and hardness was investigated by varying the particle size and content ratio of the added super absorbent polymers while preparing the silicone resins. The absorbency of the silicone resins was measured over time. Additionally, the particle shape of the super absorbent polymers as well as the distribution within the silicone resin was observed using an optical microscope.

An Evaluation of a super-absorbent polymer as the Nucleating Agent for a Capsule-type Ice Storage System (고흡수성고분자가 조핵제로 첨가된 빙축열용 축열재 개발)

  • Choi, Hyung-Joon;Hong, Seong-Ahn;Park, Won-Hoon
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 1990
  • A study was conducted to investigate the feasibility of using a super-absorbent polymer made from a acrylic acid copolymer for a capsule-type ice storage system. In a simple pyrex-tube test, 25% of distilled water samples tested turned out not be frozen at all at $-12^{\circ}C$ and the average supercooling of the samples frozen was $9.8^{\circ}C$. With the addition of 0.5wt% super-absorbent polymer, however, the supercooling of the distilled water was dramatically reduced and more than 35% of samples tested did not show any supercooling. The heat transfer characteristics of a capsule-type ice storage unit was also investigated with a distilled water as the phase-change material. With the addition of 0.5wt% polymer, the supercooling of water was not observed at all and thus an overall heat transfer was enhanced. Based on these results, it was concluded that a super-absorbent polymer is a potential candidate as the nucleating agent for an ice-storage system.

  • PDF

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.

Application of Super Water Absorbent for Edible Mushroom Production (식용버섯 재배시 초고흡수성 폴리머의 효과)

  • Kim, Myung-Kon;Yoon, Sook;Mun, Sung-Pil;Kim, Hyung-Moo;Chang, Tae-Bok;Hong, Jae-Sik
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Super water absorbent (CPAM-AS-hyd-1) was prepared by polymerization of acrylamide and allyl sulfonate salt with N,N'-methylene-bis-acrylamide as crosslinking agent, followed by alkaline hydrolysis and the effect on mycelial growth and sporophore production of edible mushrooms in the artificial cultivation was examined. The mycelial growth of edible mushrooms did not depend on the addition of super water absorbent upto 200 g of hydrated polymer gel per 100 cc medium. The proper hydrated polymer gel concentration for sporophore production of Pleurotus sajor-caju and Hericium erinaceus were 200 g and $200{\sim}250\;g$ per 100 cc medium, respectively. The proper hydrated polymer gel and puffed rice hull concentration for sporophore production of Flammulina velutipes was 200 g per 100 mm medium and 10% (v/v), respectively.

  • PDF

Swelling Behavior of Biodegradable Crosslinked Gel based on Poly(aspartic acid) and PEG-diepoxide

  • Min, Suk-Kee;Kim, Ji-Heung;Chung, Dong-Jun
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • Poly(aspartic acid), PASP, is a biodegradable, water-soluble polymer and offers a biodegradable alternative to polycarboxylates and other non-degradable water-soluble polymers. PASP one of poly (amino acid)s, possesses carboxylic acid pendant group in its repeating unit, which can be used for various further modification purposes. In this study we prepared high molecular weight polysuccinimide, as the precursor polymer for PASP, by thermal polycondensation ofL-aspartic acid in the presence of phosphoric acid. The polysuccinimide was hydrolyzed with 0.1 N sodium hydroxide, and then acidified to give PASP. High water-absorbent gels were produced by thermal crosslinking of freeze-dried mixture of partially-neutralized PASP and different amount of low moi. wt. PEG-diepoxide compounds in aqueous medium. The swelling behavior of the prepared gels from different size and composition of crosslinking reagent in different media was investigated and the results were discussed. This PASP-based hydrogel materials possessing inherent biodegradability, potential non-toxicity and biocompatibility, is expected to be used as a substrate for various biomedical applications as well as a general purpose super-absorbent polymer.

  • PDF

Effects of Super Absorbent Polymer Addition on the Supercooling and Thermal Properties of Distilled Water (고 흡수성 수지 첨가가 증류수의 과냉각 및 열적 특성에 미치는 영향)

  • Lee, Seok-Joon;Jang, Jeong-Ik;Kim, Jin-Hyuk;Lee, Myung-Kyu;Park, Seul-Hyun
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2018
  • This paper investigated the thermal properties of phase change materials (PCMs) prepared by adding a super absorbent polymer (SAP) to distilled water. The thermal properties of PCMs were investigated using differential scanning calorimeter (DSC) and T-history methods. It was found that 0.1 g SAP addition to distilled water resulted in the best PCM in terms of its thermal properties. The experimental results obtained from the DSC analysis showed that the addition of SAP to distilled water lowered the latent heat from 11.2 J/g to 17.2 J/g. However, the phase separation characteristics which are typically observed for water-based PCMs were found to be improved by adding the SAP. Similar behaviors were observed in results determined from the T-history method. Additionally, the T-history method clearly demonstrated that adding the SAP to distilled water improved the supercooling temperature, shortening the liquid retention time. Despite reductions in the latent heat of PCM with the SAP addition, it is expected that the operating cost of the cooling system can be further reduced due to its improved phase change characteristics such as phase separation and supercooling temperature when the PCM with the 0.1 g SAP added is applied.

Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide (폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구)

  • Kim, Jin Kyung;Kim, Dae Ho;Joo, Sang Hyun;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2018
  • For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.