• Title/Summary/Keyword: super water-absorbent resin

Search Result 3, Processing Time 0.017 seconds

Study on the Characteristics of the Absorbency Silicone by Super Absorbent Polymers (고흡수성 수지를 이용한 흡수성 실리콘의 특성 연구)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Silicone resin has no water-absorbing function because it is a strong hydrophobic polymer. However, addition of super absorbent polymer gives much better absorbency than that of conventional silicone resin. In this study, we developed novel silicone materials with water-absorbing function by choosing three types of amorphous acrylic super absorbent polymers with different particle sizes, determining the mixing ratio of the three polymers and applying the mixtures into two-component type silicone material for medical purpose. The change in the mechanical properties such as tensile strength, tear strength, compressive strength and hardness was investigated by varying the particle size and content ratio of the added super absorbent polymers while preparing the silicone resins. The absorbency of the silicone resins was measured over time. Additionally, the particle shape of the super absorbent polymers as well as the distribution within the silicone resin was observed using an optical microscope.

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.

Preparation and Characterization of Bead Type Superabsorbent Resin (비드형 고흡수성 수지의 제조 및 특성연구)

  • Ahn, Kyo Duck;Yoon, Minjoong
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.760-766
    • /
    • 2014
  • Bead type super-absorbent resins to be used for release-control were prepared by modification of the inverse suspension polymerization, and their physical properties were characterized. Acrylic acid and acrylamide were used as monomers, and N,N-methylenebisacrylamide was used as crosslinker, controlling the viscosity of monomer solution by adding hydroxyethylcellulose (HEC). SEM studies of the synthesized beads verified that the bead surfaces had many pores with their diameters of several tens nm. The bead sizes were in the range of $500{\sim}3000{\mu}m$, depending on the viscosity of the monomer solution. Both absorbent amount and absorbent rate of the beads were inversely proportional to the bead size, and the maximum water absorbent amount of 1 g beads was determined to be ca. 170~200 g for 5 hrs. The absorbent rate was also dependent on pH change of the aqueous solution, exhibiting the maximum rate in pH ranging from 5 to 11. The absorbent rate decreased as the concentration of salt (NaCl and $MgCl_2$) or ethanol and ethylene glycol increased. Release time of the water absorbed into the bead resins was 700 hrs, confirming the usefulness of the resin for the good release-control materials.