• 제목/요약/키워드: superplasticizer

검색결과 318건 처리시간 0.02초

폴리카본산계 고성능감수제를 이용한 콘크리트의 초기강도에 따른 현장적용성 연구 (Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer)

  • 이진우;김경민;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.200-203
    • /
    • 2004
  • In this study, it is examined the properties of flow and early strength of concrete according to superplasticizer. For this experiment, it is analyzed that the flow and strength properties according to the mixture factors, compared with naphthalene superplasticizer(normal & delay type) focused on polycarboxylate superplasticizer. (1) The slump loss of concrete used polycarboxylate superplasticizer showed $4\~8cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer is about $70\%$ level of the normal naphthalene type, it is superior to the delay type, but the performance showed so lowly. The 28days, early strength didn't differ according to the kind of superplasticizer.

  • PDF

보수 모르타르용 고성능 유동화제의 사용 적합성에 관한 실험적 연구 (A Study on the Experimental Study on Use Proper of Superplasticizer for Repair Mortar)

  • 김영삼;송태협;이문환;이세현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.297-300
    • /
    • 2006
  • Recently, To extend building's life, the use amount of repair mortar has been rapidly increased and naphthalenesulfonic and melanminesulfonic, polycarboxylic superplasticizer etc. are used for repair mortar in large numbers of construction site for efficient work. In this study, it was going to examine the use proper of superplasticizer for repair mortar through the hydrate setting time test and flow test with the mortar combination which replaced by alumina cement and added superplasticizer. As a result, the fluidity of the mortar replaced by alumina cement(10%) and added superplasticizer was dropped down and setting time was shortened. Especially this appearance was more increased on the mortar combination added ploycarboxylic and melanminesulfonic superplasticizer than naphthalensulfunic superplasticizer.

  • PDF

폴리카본산계 고성능감수제를 사용한 콘크리트의 특성연구 (Study on The Properties of The Concrete with Polycarboxylate Superplasticizer)

  • 오병환;김기완;박대균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.277-280
    • /
    • 2004
  • Recently, as structure is more higher and bigger, we need high strength and high performance concrete. Therefore it is necessary superplasticizer for high strength and high performance concrete. In this study, it is examined the properties of flow, air content and strength of concrete with polycarboxylate superplasticizer in comparison with existing superplasticizer. First, The slump loss of concrete used polycarboxylate superplasticizer showed 2cm until 120 minutes. Second, The air content loss of concrete used polycarboxylate superplasticizer showed $1\%$ until 120 minutes. Third, It is possible to manufacture $1000kgf/cm^2$ strength concrete using polycarboxylate superplasticizer with $806kg/m^3$ cement content, $18\%$ water-binder ratio, $15\%$ silica fume, $10\%$ fly-ash content.

  • PDF

고로슬래그와 폴리카르본산계 유기 혼화제를 첨가한 Belite-rich Cement 모르타르 유동특성 (Rheology Properties of Belite-rich Cement Mortar Added Blastfurnace Slag and Polycarbonate-based Superplasticizer)

  • 송종택;송종택;조현태;황인수;박춘근
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.145-151
    • /
    • 2000
  • In order to investigate the rheological properties of belite-rich cement(BRC) added polycarbonate-based superplasticizer and blastfurnace slags which have different blaines at 4500, 6000 and 8000$\textrm{cm}^2$/g, the change of minislumps and mortar slumps are measured with time. The rheological properties improve as specific surface area of added slag decreases or amount of polycarbonate-based superplasticizer increases. The slump loss can be controlled effectively by the steric hinderance effect of polycarbonate-based superplasticizer. According to the results, when mix proportion of the mortar is 1.5% mass content of superplasticizer and 30% mass addition of blastfurnace slag which blaine is 4500$\textrm{cm}^2$/g, the best mortar slump can be achieved without any significant segregation of materials.

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

유동화공법에 의해 제조한 고유동 콘크리트의 시공 및 원가분석 (The Execution and Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제4권2호
    • /
    • pp.129-136
    • /
    • 2004
  • High fluidity concrete(HFC) requires high dosage of superplasticizer to acquire sufficient fluidity, and high contents of fine powder and viscosity enhancing admixtures to resist segregation. The use of high amount of admixtures to make HFC at batcher plant in ready mixed concrete company is one of the reasons to raise the manufacturing cost of HFC. For this reason, new type of manufacturing method of HFC are described using both flowing concrete method and segregation reducing superplasticizer(SRS) in order to gain economical profit and offer the convenience for quality control.. As dosage of melamine based superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that addition of viscosity agent into superplasticizer reduce bleeding and improve segregation resistance of concrete. Dosage of AE agent into superplasticizer containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer. Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found. For the estimation of construction cost of high fluidity concreting using segregation reducing type superplasicizer, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer cost, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

증점제를 이용한 분리저감형 유동화 콘크리트의 개발 및 그 특성분석 (Development and Property Analysis of Segregation-Reducing Type Flowing Concrete Using the Viscosity Agent)

  • 한천구;강의영;오선교;반호용
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.95-105
    • /
    • 1999
  • When superplasticizer is added to manufacture flowing concrete, the base concrete usually needs the adjustment to assure the sufficient fines contained to obtain flowable consistency without excessive bleeding or segregation. However, this may not only increase the cost, but also cause inconvenience in producing the base concrete. In this paper, the experiments are performed on normal base concrete to achieve a segregation-reducing flowing concrete by adding superplasticizer mixed with viscosity agents and AE admixtures. Three kinds of superplasticizer and two kinds of viscosity agent are selected. According to the results, with regard to the performance and cost of the admixtures, melamine type superplasticizer combined with the PEO viscosity agent and AE admixtures at the ratio 1:0.28:0.001 can acquire good quality and reduce the cost in producing the flowing concrete. With proper addition of combined superplasticizer, even though water to cement ratios of the base concrete are different, the segregation-reducing flowing concrete could be also achieved without reproportioning of the base concrete. However, it would be more desirable if the superplasticizer could be adjusted, before it is put into the practical use in order not to cause some other problems, such as rapid rate of slump loss and retarding of setting time.

멜라민계 고유동화제의 다양한 조건에서의 합성 및 응용 (Synthesis and Application of Melamine-Type Superplasticizer at the Different Synthetic Conditions)

  • 윤성원;신경호;노재성
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.811-818
    • /
    • 2005
  • 플래쉬 콘크리트의 유동성 및 유동성 감소는 유기 화학혼화제의 종류에 영향을 받는다는 것은 잘 알려져 있다. 유기화학 혼화제는 콘크리트의 물성을 증가시킬 수 있다. 술포네이트 나프탈렌 포름알데하이드(SNF, Sulfonated Naphthalene-Formaldehyde) 고유동화제(superplasticizer)가 대표적으로 많이 사용되고 있으나, 유동성 감소의 문제점이 있다. 본 연구에서는 술포네이트 멜라민 포름알데하이드(SFM, Sulfonated Melamine-Formaldehyde) 고유동화제를 합성하여 SNF 고유동화제의 물리적 특성을 보완하고자 한다. SNF계 고유동화제를 4단계로 나누어 반응을 진행하였고, Step.1은 hyydroxymethylation 단계이고, Step.2는 sulfonation단계이고, Step.3은 중합단계이고, Step.4는 안정화 단계이다. SMF 고유동화제의 합성은 pH, 반응온도 및 반응시간에 영향을 받는다 본 합성에서 우리는 멜라민과 포름알데하이드의 몰비를 1:3, 1:4로 변화시키고, Step. 3에서 촉매의 양을 조절하면서 반응을 진행하였다. 그리고, SMF 고유동화제 및 SNF계 고유동화제와 혼합한 시료에 대해서 시멘트 대비 0.5, 1.0, 1.5wt% 첨가하여 물리적 특성을 비교하였다. 고유동화제를 첨가한 시료는 첨가하지 않은 시료 CEM보다 높은 압축강도, 슬럼프 값을 나타내었고, 미세한 기공과 낮은 기공율을 보였다.

국내 고성능 감수제의 소비구조 및 형태에 관한 조사보고 (A Survey report on the Consumption Structure and Behavior of Domestic Superplasticizer)

  • 최민수;이연우;김홍민;박영호;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.141-144
    • /
    • 1990
  • In recently, the interest of high strength and flowing concrete, to improve quality and workability of concrete, is gradually increased. In order to make high strength and flowing concrete, many processes may be considered, the water reducing technique using superplasticizer seems to be the most practical, but domestic superplsticizers are not widely used because of economical efficiency, low quality and lack of understanding in construction field. The purpose of this report is to analyze the consumption structure and behavior of domastic acmixtures containing superplasticizer, and to examine about, dessemination of superplasticizer.

  • PDF

고유동 콘크리트용 분리저감형 유동화제의 최적배합비 결정 (Determination of Optimal Mixture Proportion of Segregation Reducing Type Superplasticizer for High Fluidity Concrete)

  • 한천구;김성수;손성운
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.275-282
    • /
    • 2002
  • 고유동 콘크리트를 제조할 경우는 유동성 향상을 위한 다량의 고성능 감수제와 재료분리를 방지하기 위한 다량의 분체 혹은 증점제로 말미암아 제조비용이 고가이고, 또한 품질관리에도 많은 어려움이 있다. 그러므로, 본 연구에서는 유동성 및 재료분리 저항성이 우수한 고유동 콘크리트를 경제적으로 제조하기 위하여 분리저감형 유동화제의 최적배합비를 결정한 다음, 유동화 공법으로 접근하는 것을 검토하였다. 실험결과로 유동화제 첨가량이 증가할수록 유동성 및 블리딩량은 증가하였고, 공기량 및 재료분리저항성은 저하하는 것으로 나타났다. 따라서, 여기에 증점제를 첨가함에 따라 양호한 유동성에서 블리딩량이 저하하였고, 재료분리저항성도 증대되었는데, 마지막으로 AE제량 증가에 따라 저하된 공기량이 회복되므로써 양질의 분리저감형 유동화제로 최적배합비를 결정할 수 있었다. 경화 콘크리트 특성으로 유동화 공법으로 제조된 고유동 콘크리트의 압축강도는 베이스 콘크리트보다 증가하는 것으로 나타났고, 무다짐 공시체의 압축강도는 표준다짐 공시체의 압축강도와 유사한 것으로 나타나 다짐 방법간의 차이는 없는 것으로 나타났다.