• Title/Summary/Keyword: support boundary condition

Search Result 78, Processing Time 0.031 seconds

EHL Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition (유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 EHL 해석)

  • 김병직;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.212-217
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearing, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power dissipation which are important parameters in thermal analysis. Another important factor in the analysis of connecting rod bearing is elastic deformation of bearing support structure which is relatively flexible. In this paper, EHL analysis of connecting rod beating is performed using mass-conserving boundary condition. Elastic deformation of bearing support structure and application of mass-conserving boundary condition have significant effects on the performances of connecting rod bearing.

  • PDF

Surface elasticity-based modeling and simulation for dynamic and sensing performances of nanomechanical resonators

  • Kilho Eom
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.285-294
    • /
    • 2023
  • The dynamic and sensing performances of nanomechanical resonators with their different boundary conditions are studied based on surface elasticity-based modeling and simulation. Specifically, the effect of surface stress is included in Euler-Bernoulli beam model for different boundary conditions. It is shown that the surface effect on the intrinsic elastic property of nanowire is independent of boundary conditions, while these boundary conditions affect the frequency behavior of nanowire resonator. The detection sensitivity of nanowire resonator is remarkably found to depend on the boundary conditions such that double-clamping boundary condition results in the higher mass sensitivity of the resonator in comparison with simple-support or cantilever boundary condition. Furthermore, we show that the frequency shift of nanowire resonator due to mass adsorption is determined by its length, whereas the frequency shift is almost independent of its thickness. This study enables a design principle providing an insight into how the dynamic and sensing performances of nanomechanical resonator is determined and tuned.

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.965-970
    • /
    • 2002
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a wide range of section ratio, dimensionless spring constant and mass ratio.

  • PDF

Free Vibrations of Tapered Beams with General Boundary Condition at One End and Mass at the Other End (일단은 일반적인 지지조건을 갖고 타단은 집중질량을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.493-500
    • /
    • 2001
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies and the corresponding mode shapes are calculated over a wide range of section ratio, dimensionless spring constant, and mass ratio.

  • PDF

Optimization to Minimize Deflection of a Large LCD Glass Plate with Multi-Simply Supports (다점 지지된 TFT-LCD 대형 유리기판의 처짐 최소 최적화)

  • Lee H.Y.;Lee Y.S.;Byun S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.861-864
    • /
    • 2005
  • A LCD glass plate is supported by multi-pin and golf-tee type support. In the FEM analysis, the support condition is treated as simply supported boundary .condition. In this study, the optimization on the location of multi-simply support is conducted. The size optimization method of ANSYS 8.0 is used as the optimization tool to search for the optimal support location of LCD glass plate. In the manufacturing process, the support condition is a fatal factor of quality control of LCD production. From the results of optimization, deflection decreases 51% compared with the original model.

  • PDF

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.1-394
    • /
    • 2002
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. (omitted)

  • PDF

Effect of Boundary Condition on Buckling Characteristics of Pipe Supports (파이프 서포트의 좌굴특성에 대한 지지조건의 영향)

  • Lee, Jin Seop;Lee, Yeon Su;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.41-47
    • /
    • 2015
  • Recently, a lot more disasters in the temporary structures happen because the stabilities of the temporary structures are disregarded by the reduction of the unit cost, using defective materials, the existing materials and so on. Pipe supports, which are one of the temporary structures, are basically used for the most constructing works such as buildings, bridges, plants and so on. In the most sites, adequate support installations of the pipe supports have not been performed although the presence of the guideline legally and institutionally. In this study, therefore, the collapse accidents of the pipe supports were investigated on the basis of theoretical analysis as well as the buckling tests by simulating the site support condition. Both the theocratical analysis and test results show that the buckling load in the fixed ends is at least 4 times larger than one in the pinned ends. This results will be utilized for safety assurance as well as accident prevention the in the field application.

FINITE DIFFERENCE SCHEME FOR SINGULARLY PERTURBED SYSTEM OF DELAY DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • SEKAR, E.;TAMILSELVAN, A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.201-215
    • /
    • 2018
  • In this paper we consider a class of singularly perturbed system of delay differential equations of convection diffusion type with integral boundary conditions. A finite difference scheme on an appropriate piecewise Shishkin type mesh is suggested to solve the problem. We prove that the method is of almost first order convergent. An error estimate is derived in the discrete maximum norm. Numerical experiments support our theoretical results.

Free Vibration Characteristics of the Steel and GFRP Composite Cylindrical Shells with Simply Supported Conditions (단순지지된 Steel 및 GFRP 복합재료 원통셸의 자유진동 특성)

  • 이영신;최명환;신도섭
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • The cylindrical shells are used as primary components of complex structures such as airplane fuselages and nuclear pressure vessels. Recently the free vibration analysis of these structures are investigated by many researchers. The engineering informations on experimental validation of the free vibration behavior on the simply supported cylindrical shells are very few. The experimental methods for realizing the physical boundary condition of simply supported edges are examined. Natural frequencies and mode shapes of the isotropic and plain weave composite simply supported shells are obtained by modal tests. A theoretical and finite element analysis are also performed in order to validate the experimental results. The experimental results indicate that the simply supported boundary conditions with bolts along the circumferential direction of shell in both ends are well achieved. Those are shown to agree with the analytical results and with the finite element analysis results. These methods can be used to realize other experimental simple support boundary conditions.

  • PDF