• Title/Summary/Keyword: sustained oscillation

Search Result 30, Processing Time 0.048 seconds

Sustained Oscillation of an Inverter-Fed Induction Motor Drive System and its Stabilization

  • Li Hongmei;Hikihara Takashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.80-84
    • /
    • 2006
  • The sustained oscillation of rotor speed is often experienced in PWM inverter induction motor (IM) drive systems. In this paper the oscillation is investigated from the point of view of Hopf bifurcation theory. The sufficient and necessary conditions for existence of limit cycle are introduced to determine the bifurcation set in the stator voltage versus stator frequency plane. According to the conditions it is clarified that the bifurcation set inherently exists in the instable operation of IM. Moreover, it is numerically shown that the V/f curve can be adjusted to stabilize the sustained oscillation of rotor speed.

Stochastic Analysis of Self-sustained Oscillation Loop for a Resonant Accelerometer

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.574-578
    • /
    • 2004
  • In this paper, a nonlinear feedback system is analyzed for a surface micromachined resonant accelerometer. For this, a brief illustration of the plant dynamics is given. In the analysis, the periodic signal in the nonlinear feedback loop is obtained by the limit cycle point, which is best approximated via the describing function method. Considering the characteristic feature of plant dynamics, a simple phase shifted relay with finite slope is designed for the nonlinearity implementation. With a describing function for random plus sinusoidal input, we analyzed the effect of a white Gaussian noise on oscillation frequency. Finally, simulation and experimental result is given.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Kim, Jong-Hyun;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Lee, Jong-Hyun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.

Swing Motion of Miniaturized Humanoid Robot (소형 휴머노이드 로봇의 그네 운동)

  • 이수영;정길도;성영휘;박성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • In this Paper, we present analysis on the dynamics of human swing and its realization by a miniaturized humanoid robot. Since the motion of legs is the most important in the swing, the swing system can be approximated as a double pendulum. Based on Lagrangian analysis, the leg motion is designed to make the swing motion as sustained oscillation. In order to detect the peak instant of the swing and to synchronize the leg motion with the swing, we use ADXL acceleration/inclination sensor. The miniaturized humanoid in this paper has total 20 DOFs including 6 DOFs in each leg, 34cm in height, and 2kg in weight. As a result of realization of the swing by the humanoid, the sustained oscillation is verified through experiments.

Stability Analysis of Nonlinear Pulse-Modulated System Subject to Gaussian Noise (가우스 잡음을 고려한 비선형 펄스 변조 시스템의 안정도 분석)

  • 강영채
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.67-79
    • /
    • 1982
  • The stability of general pulse-width modulation system with Gaussian random disturbance was discussed . General system is divided into nonlinear and linear elements using the conventional describing function method. The concept of the equivalent admittance was used to find the transfer characteristic of the nonlinear element of the system. In this paper the self-sustained oscillation condition in the autonomous system was derived and the results was analyzed with computer simulation.

  • PDF

Oscillation Amplitude-controlled Resonant Accelerometer Design using Aautomatic Gain Control Loop (자동이득 제어루프를 이용한 진폭제어방식의 공진형 가속도계 설계)

  • Yun, Suk-Chang;Sung, Sang-Kyung;Lee, Young-Jae;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.674-679
    • /
    • 2008
  • In this paper, we introduce a new design approach for self-sustained resonant accelerometer, that takes advantage of the automatic gain control (AGC) loop to achieve a stabilized oscillation dynamics. Fundamental idea of this accelerometer is to maintain uniform amplitude of oscillation under input accelerations. Through system modeling and loop transformation considering the envelope of oscillation, the controller is designed to maintain uniform amplitude in oscillation under dynamic input acceleration. The simulation results demonstrate the feasibility of the proposed accelerometer design, which is applicable to control grade inertial measurement system in industrial and civil application fields.

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Kageyama, Ryoichiro;Niwa, Yasutaka;Shimojo, Hiromi
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.497-502
    • /
    • 2009
  • In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates (3차원 교차 주름판 내 유동의 불안정성 및 자활 진동)

  • Lee Seung Youp;Choi Young Don
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF