• Title/Summary/Keyword: symmetric disaturated triacylglycerol

Search Result 2, Processing Time 0.017 seconds

Enzymatic synthesis of asymmetric structured lipids containing 1,2-disaturated-3-unsaturated glycerol using acyl migration (효소적 Acyl migration을 이용한 비대칭형 재구성지질(1,2-disaturated-3-unsaturated glycerol)의 합성 및 분석)

  • Hyeon, Jin-Woo;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The enzymatic interesterification was performed to produce structured lipids (SLs) with palm mid fraction (PMF) and stearic ethyl ester (STEE) for 1, 3, 6, 9, 12 and 15 hr at $80^{\circ}C$. The reaction was catalyzed by Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosus, amount of 20% by weight of total substrates) in a shaking water bath set at 180 rpm. The optimum condition for synthesis of asymmetric SLs were: substrate molar ratio 1:0.5 (PMF:STEE, by weight), reaction time 6 hr, enzyme 20% (wt%, water activity=0.085) of total substrate and reaction temperature $80^{\circ}C$. After reaction at optimized condition, triacylglycerols (symmetrical and asymmetrical TAGs) from reactants were isolated. POP/PPO (1,3-palmitoyl-2-oleoyl glycerol or 1,2-palmitoyl-3-oleoyl glycerol), POS/PSO (palmitoyl-oleoyl-stearoyl glycerol or palmitoyl-stearoyl-oleoyl glycerol), SOS/SSO (1,3-stearoyl-2-oleoyl glycerol or 1,2-stearoyl-3-oleoyl glycerol) were obtained by solvent fractionation. Finally, refined SLs contained stearic acid of 16.91%. Solid fat index and thermogram of the refined SLs were obtained using differential scanning calorimetry. The degree of asymmetric triacylglycerol in the refined SLs was analyzed by Ag-HPLC equipped with evaporated light scattering detector (ELSD). The refined SLs consisted of symmetric TAG of 41.15 area% and asymmetric TAG of 58.85 area%.

Enzymatic reaction model for the production of symmetrical lipid molecules using the response surface methodology

  • Hong, Joon-Sun;Shin, Jung-Ah;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.265-282
    • /
    • 2018
  • The purpose of this research was to produce symmetric (Saturated-Unsaturated-Saturated, SUS) triacylglycerol (TAG) using palm stearin fraction oil (PSFO) and high oleic sunflower oil (HOSO) as substrates to replace cocoa butter. PSFO was blended with HOSO (1 : 2 weight ratio), and $lipozyme^{(R)}$ TLIM (20 weight % of the substrate) was added. Interesterification was carried out in a shaking water bath at $55^{\circ}C$ at 220 rpm for 6 hours. The response surface methodology (RSM) through the central composite face design was employed to observe the optimized SUS-TAG. The independent factors were the reaction temperature ($X_1$: 65, 75 and $85^{\circ}C$), reaction time ($X_2$: 1, 3 and 5 hours) and ratio of TLIM ($X_3$: 10, 15 and 20 weight %). The dependent variables were $Y_1$ = Saturated-Unsaturated-Unsaturated (SUU, area %), $Y_2=SUS$ (area %), $Y_3$ = Saturated-Saturated-Unsaturated (SSU, area %), $Y_4$ = Unsaturated-Unsaturated-Unsaturated (UUU, area %), and $Y_5=sn-2$ unsaturated fatty acid (area %). The optimal conditions from the central composite face design minimized acyl migration while maximizing the presence of unsaturated fatty acid at the sn-2 position (73.43 area %). The optimal conditions were $X_1=65^{\circ}C$, $X_2=1hour$, and $X_3=20weight%$. As a result of the response surface analysis, the lack of fits was found as $Y_1=0.622$, $Y_2=0.438$, $Y_3=0.264$, $Y_4=0.526$, and $Y_5=0.215$, and their $R^2$ were 0.897, 0.944, 0.826, 0.857, and 0.867, respectively.