• Title/Summary/Keyword: synchronous generator

Search Result 560, Processing Time 0.036 seconds

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

A Study on Excitation System for Synchronous Generator using Current Mode Controlled PWM Converter (전류제어형 PWM컨버터를 이용한 동기발전기용 여자시스템에 관한 연구)

  • 장수진;류동균;서민성;김준호;원충연;이진국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.32-39
    • /
    • 2003
  • The output voltage of synchronous generator is regulated constantly by field current control in excitation system High frequency PWM converter (current control mode buck converter) type excitation systam fer synchronous generator is able to control exciter current when the load change happened. This paper deals with the design and evaluation of the excitation system for a synchronous generator to improve the steady state and transient stability. The simulation and experimental results show that the proposed excitation system is able to improve the response time by the DVR(digital voltage regulator) of 50[kW] synchronous generator.

Synchronous Generator Protection using Fault Currents (고장전류를 이용한 동기 발전기 보호)

  • Park, Cheol-Won;An, Jun-Yeong;Lee, Sang-Seong;Sin, Myeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.399-401
    • /
    • 2006
  • This paper proposes a synchronous generator protection algorithm using Discrete Wavelet Transform for detection of fault currents. The proposed technique is implemented by using the C language and the Wavemenu of MATLAB Toolbox, and consists of normal state and internal fault state. The effectiveness of proposed method is demonstrated by MATLAB simulation package for synchronous generator, which collects the balanced and unbalanced fault currents through simulation.

  • PDF

The Current Boost Type Static Excitation Systems for Synchronous Generator (전류 부스터 정류기를 갖는 정지형 여자시스템 특성 개선 연구)

  • 임익헌;김장목;김경철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.193-196
    • /
    • 1999
  • The current boost type atatic excitation system for synchronous generator that can sustain prope output voltage level even at fault condition is proposed. The proposed excitation system is capabl of supplying level 60% of the rated voltage. The proposed system is verified and tested using computer simulations as well as load tests. The load tests are performed with a 5KVA synchronous generator driven by a ac motor. The actual tests results indicated a good performance.

  • PDF

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.

Improvement of Transient Characteristics of Brush-less Type Synchronous Generator for Emergency Driven by Internal-Combustion Engine (내연기관 구동 비상용 브러시리스형 동기발전기의 과도특성 개선)

  • An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.268-272
    • /
    • 2016
  • A brush-less type synchronous generator is driven by an internal-combustion engine that is used for emergency source. This kind of generator has to maintain output voltage in a range of some degree under the abrupt load irregular conditions such as a full load trip. This paper suggests a suppression method of increasing the output voltage over the rating. Automatic voltage regulator detects excessive rising of output voltage of the generator and supplies the signals to a switch installed in the rotating exciter through the photo-coupler. The current of main field rapidly decreases by additional resistor of the main filed circuit. Therefore, the output voltage of the generator is maintained effectively. The experimental results verified that the excessive value of the output voltage is limited in the range of 7% of the rated voltage.

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

A Study on the Detection of Asynchronous State of the Synchronous Generator

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.405-412
    • /
    • 2013
  • This paper includes new protection concepts and practices to avoid mechanical damage of three-phase transformer by asynchronous operation of synchronous generator. this failure is often caused just after synchronous generator was connected to the grid because of a malfunction of the controller or misconnections of the synchronous devices. The results of the studies on the analyzing the phenomenon of asynchronous operation experienced in Korea and rapidly detecting asynchronous state are descrived.

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

Design of a High Frequency PWM Converter for Synchronous Generator Excitation System (동기발전기 여자시스템용 고주파 PWM 컨버터 설계)

  • Jang Su-Jin;Ryu Dong-Kyun;Won Chung-Yuen;Lee Jin-Kuk;Bae Kee-Hun;Kim Soo-Suck
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the output voltage constant under normal operating conditions at various levels. The output voltage of Synchronous Generator is regulated constantly by field voltage control in excitation system. High frequency PWM converter (Buck converter) type excitation system for synchronous generator that can sustain prefer output voltage level even at the fault condition happened. The proper operation of the proposed excitation system was verified through the simulations and the experiments.

  • PDF