• Title/Summary/Keyword: synchronous machine

Search Result 421, Processing Time 0.024 seconds

Simulation of Synchronous Machines Using Object-Oriented Digital Computer Simulator (객체지향기법을 적용한 디지탈 컴퓨터 시뮬레이터를 이용한 동기 발전기 시뮬레이션)

  • Park, Ji-Ho;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.102-105
    • /
    • 1995
  • In power system stability analysis, modelling of the synchronous machine is necessary and vary important. In this paper, a synchronous machine is modeled and simulated by using Object-Oriented method. The mathematical equations describing the dynamic behavior of the synchronous machine is represented by block diagram and Objected-Oriented Digital Computer Simulater(ODCS). The developed method is tested for a one-machine-to-infinite-bus system, which is accurate and very useful for a multi-machine system simulation.

  • PDF

A Study on the Real Time Digital Field Time-Constant Regulator for Micro-Synchronous Machine (축소형 동기발전기 실시간 디지털 계자시정수 보상장치에 관한 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Hwang, Chi-U
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.253-256
    • /
    • 1997
  • This paper describes a novel design method for compensating field time-constant of micro-synchronous machine so that its terminal flux can show the same characteristics as large-scale synchronous machine's. In addition to it, the suggested design method can determine the field time-constant regulator's parameters considered the nonlinearities of micro-synchronous machine such as saturation and loading effect. This method applied to 5kVA micro-synchronous machine, and the digital time-constant regulator with digital AVR were designed such that the short field time-constant, $T_{do}'=1.12\;sec$, can take on the large-scale synchronous machine time constant, $T_{do}'=1.47\;sec$. After determining the parameters of controllers, the real time digital time-constant regulator and digital AVR algorithm were implemented by using the PC with Penumum processor, and the usefulness of suggested real time digital time-constant regulator was verified by observing its good performance on the excitation of micro-synchronous machine.

  • PDF

A New Type of CPPM Machine with Stator Axial Magnetic Ring

  • Xie, Kun;Li, Xinhua;Ma, Jimin;Wu, Xiaojiang;Yi, Hong;Hu, Gangyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1285-1293
    • /
    • 2018
  • This paper proposes a new type of consequent-pole permanent-magnet (CPPM) machine with stator axial magnetic ring that increases torque capability over a wide speed range and enhances efficiency for the built-in rare-earth permanent magnet synchronous machine used in new energy vehicles. The excitation winding of the CPPM hybrid excitation synchronous machine in the stator is replaced by ferrite magnetic ring to simplify the structure and manufacturing process of the machine. The basic structure and magnetic regulation principle of the proposed machine are introduced and compared with the traditional interior rare-earth permanent magnet synchronous machine and CPPM hybrid excitation synchronous machine. Finally, experimental results of a new type of CPPM synchronous motor prototype with axial magnetic ring are introduced in the paper.

A study on the Synchronous Machine Modeling by Parameter Modification (매계분수 기정에 의한 동기식의 모델링에 관한 연구)

  • 김준현;유석구;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.11
    • /
    • pp.379-386
    • /
    • 1983
  • In this paper,the more accurate and simple synchronous machine model is derived by parameter modification method. At first, the flux linkage state space model is composed by redefining the parameters of synchronous machine and considering the saturation effect approximately. After that, this modified model is apply to the power system model and the effects of power system stability is analyzed by this model's characteristics in fault condition. As the result, the modified synchronous machine model shows more accurate and simple than the privious one.

  • PDF

Conceptual Design Considerations of 1MW Class HTS Synchronous Motor (1MW 고온초전도 동기모터의 개념설계 고찰)

  • Baik Seung-Kyu;Sohn Myung-Hwan;Lee Eun-Yong;Kwon Young-Kil;Moon Tae-Sun;Park Heui-Joo;Kim Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.38-43
    • /
    • 2004
  • 1MW class superconducting synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K(-243$^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

Analytical Investigation on Fundamental Electrical Characteristics of Large Air-gap Superconducting Synchronous Machine

  • Yazdanian, M.;Elhaminia, P.;Zolghadri, M.R.;Fardmanesh, M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 2013
  • In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show good agreement with FEM results.

New Equivalent Circuit of a Synchronous Machine (동기식의 새로운 등가회로)

  • 박민호;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.11
    • /
    • pp.440-444
    • /
    • 1985
  • Voltage equations of a synchronous machine are derived from the electromagnetic field theory in order to develop a new equivalent circuit model considering core loss. The result from the new equivalent circuit model is superior to that of the conventional one in the analysis of machine performance and characteristics on optimal efficiency control of a synchronous motor.

  • PDF

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Study on Generation of Harmonic Voltage using Synchronous Machine with d-axis and q-axis Harmonic Field Windings

  • Mukai, Eiichi;Kakinoki, Toshio;Yamaguchi, Hitoshi;Kimura, Yoshimasa;Fukai, Sumio
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • We examined the generation of harmonic voltage by a synchronous machine adding d-axis and q-axis harmonic field windings in order to reduce the harmonics in a power line. We derived the expressions of the armature voltage in the case of supplying the currents with the frequency nf to the d-axis and q-axis harmonic field windings. We constructed the synchronous machine adding the harmonic windings. In this paper, the expressions and the experimental results on the generation of harmonic voltages by the synchronous machine are presented.

Superconducting Synchronous Motor Design considering Machine Losses (손실을 고려한 초전도 동기전동기 설계)

  • 백승규;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2001
  • Superconducting synchronous generators and motors are designed based on 2 dimensional electro-magnetic approach. In the case of generator, if the machine output rating and terminal voltage are decided the armature rating current will be decided automatically according to its power factor. However, in the case of motor, if the output rating is given with [hp] or [kw] units, the armature terminal voltage and current are not decided directly because the machines armature input power and mechanical output are different by way of losses. So in order to calculate the armature current more accurately. the machine losses must be included in the design procedure. In this paper the machine loss of superconducting motor are analyzed and used for decision of the armature input power and current. Moreover, the differences of voltage equations between superconducting synchronous generator and motor are considered.

  • PDF