• Title/Summary/Keyword: synchrotron X-ray scattering

Search Result 71, Processing Time 0.023 seconds

Interfacial Diffusion in Fe/Cr Magnetic Multilayers Studied by Synchrotron X-ray Techniques (방사광 x-선 기법에 의한 다층형 Fe/Cr 자성박막의 계면확산 연구)

  • 조태식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.223-227
    • /
    • 2004
  • We have studied the interfacial diffusion of Fe/Cr multilayers using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and high-resolution x-ray scattering. The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers increased with the Cr-layer thickness. The Fourier transform (FT) of EXAFS data clearly showed that the Fe atoms dominantly diffused into the stable Cr layers at the Fe/Cr interface. The results of high-resolution x-ray scattering supported the interfacial diffusion of Fe atoms. Out study revealed that the dominantly interfacial diffusion of Fe atoms into the Cr layers effects the interfacial roughness of the Fe/Cr multilayers.

The Allosteric Transition of the Chaperonin GroEL from Escherichia coli as Studied by Solution X-Ray Scattering

  • Kuwajima Kunihiro;Inobe Tomonao;Arai Munehito
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2006
  • This is a short review article of our recent studies on the ATP-induced, allosteric conformational transition of the chaperonin GroEL complex by solution X-ray scattering. We used synchrotron X-ray scattering with a two-dimensional, charge-coupled, device-based X-ray detector to study (1) the specificity of the chaperonin GroEL for its ligand that induced the allosteric transition, and (2) the identification of the allosteric transition of GroEL in its complicated kinetics induced by ATP. Due to the dramatically increased sensitivity of the X-ray scattering technique based on the use of the two dimensional X-ray detector and synchrotron radiation, different allosteric conformational states of GroEL populated under different conditions were clearly distinguished from each other. It was concluded that solution X-ray scattering is an extremely powerful tool for investigating the equilibrium and kinetics of cooperative conformational transitions of oligomeric protein complex, especially when combined with other spectroscopic techniques such as fluorescence spectroscopy.

Crystallization of Ba-ferrite/sapphire(001) Thin Films Studied by Real-Time Synchrotron X-ray Scattering

  • Cho, Tae-Sik
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • The crystallization of amorphous Ba-ferrite/sapphire(001) thin films was studied in real-time synchrotron x-ray scattering experiments. In the sputter-grown amorphous films, we found the existence of epitaxial $Fe_3O_4$ interfacial crystallites (50-${\AA}$-thick), well aligned $[0.03^circ$full-width at half-maximum (FWHM)] to the sapphire [001] direction. The amorphous precursor was crystallized to epitaxial Ba-ferrite and \alpha-Fe_2O_3$grains in two steps; i) the nucleation of crystalline \alpha-Fe_2O_3$ phase started at $300^circ{C}$ together with the transformation of the $Fe_3O_4$ crystallites to the \alpha-Fe_2O_3$ crystallites, ii) the nucleation of Ba-ferrite phase occurred at temperature above $600^circ{C}$. In the crystallized films irrespective of the film thickness, the crystal domain size of the \alpha-Fe_2O_3$grains was about 250 ${\AA}$ in the film plane, similar to that of the Ba-ferrite grains.

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Real-time X-ray Scattering as a Nanostructure Probe for Organic Photovoltaic Thin Films

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.181-181
    • /
    • 2013
  • Recently, nanostructure and the molecular orientation of organic thin films have been largely paid attention due to its importance in organic electronics such as organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs). Among various methods, the diffraction and scattering techniques based on synchrotron x-rays have shown powerful results in organic thin film systems. In this work, we introduce the in-situ annealing system installed at PLS-II (Pohang Light Source II) for organic thin films by simultaneously conducting various x-ray scattering measurements of x-ray reflectivity, conventional x-ray scattering, grazing incidence wide angle x-ray scattering (GI-WAXS) and so on. Using the in-situ measurement, we could obtain real time variation of nanostructure as well as molecular orientation during thermal annealing in metal-phthalocyanine thin films. The variation of surface and interface also could be simultaneously investigated by the x-ray reflectivity measurement.

  • PDF

Interfacial diffusion in Fe/Cr magnetic multilayers studied by synchrotron x-ray techniques (다층형 Fe/Cr 자성박막에서 계면확산의 방사광 x-선 연구)

  • Cho, Tae-Sik;Jeong, Ji-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.84-87
    • /
    • 2003
  • The interfacial diffusion in Fe/Cr/MgO(001) multilayers has been studied using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and anomalous x-ray scattering (AXS). The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers with Cr-$4{\AA}$-thick was larger than that with Cr-$4{\AA}$-thick. The results of EXAFS indicated that the Fe element dominantly diffuse into the stable Cr layers at the Fe/Cr interface. The AXS was certified the existence of the interdiffused Fe element in the Cr layers. Our study revealed that the rough interface of the Fe/Cr multilayers was caused by the interfacia diffusion of Fe element into the Cr layers.

  • PDF

Understanding spin configuration in the geometrically frustrated magnet TbB4: A resonant soft X-ray scattering study

  • Huang, H.;Jang, H.;Kang, B.Y.;Cho, B.K.;Kao, C.C.;Liu, Y.J.;Lee, J.S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1205-1211
    • /
    • 2018
  • The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the $TbB_4$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.

Temperature Dependent Octahedral Tilting Behaviors of Monoclinic and Tetragonal SrRuO3 Thin Films

  • Lee, Sung Su;Seo, Okkyun;Kim, Jaemyung;Song, Chulho;Hiroi, Satoshi;Chen, Yanna;Katsuya, Yoshio;Sakata, Osami
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1529-1534
    • /
    • 2018
  • We used in-situ synchrotron X-ray scattering to investigate phase transformations of octahedral tilted monoclinic $SrRuO_3$ (MSRO) and tetragonal SRO (TSRO) thin films on $SrTiO_3$ (STO) substrates. The octahedral tilted MSRO thin films were highly crystalline and the monoclinic distortion angle was $0.45^{\circ}$. The phase transition temperature from the MSRO to TSRO phase occurred at approximately $200^{\circ}C$ as a second order transition. Conversely, no phase transformations of the TSRO thin film occurred within the range from RT to $250^{\circ}C$. The octahedral $RuO_6$ rotation was strongly affected by the phase transformation in the SRO thin films.

Phase Transformation of Sn-Pb-Bi Solder for Photovoltaic Ribbon: A Real-time Synchrotron X-ray Scattering Study

  • Cho, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • The phase transformation of Sn-Pb-Bi solder for photovoltaic ribbon during soldering was studied using real-time synchrotron x-ray scattering. At room temperature, Sn and Pb crystal phases in the solder existed separately. By heating to $92^{\circ}C$, a new PbBi alloy crystal phase was formed, which grew further up to $160^{\circ}C$. The Sn crystal phase first started to melt at $160^{\circ}C$, and was mostly melted at $165^{\circ}C$. In contrast, the Pb and PbBi crystal phases started to melt at $165^{\circ}C$, and were mostly melted at $170^{\circ}C$. The useful result was obtained, that the solder's melting temperature decreased from $183^{\circ}C$ to $170^{\circ}C$ by addition of a small amount of Bi atoms to the eutectic Sn62-Pb38 (wt%) solder. Our study first revealed the detailed in-situ phase transformation of Sn-Pb-Bi solder during heating to the eutectic temperature. Considering the results of peel strength and hardness, adding 1 wt% of Bi atoms to the Sn62-Pb38 (wt%) solder produced an appropriate composition.

Competition between Phase Separation and Crystallization in a PCL/PEG Polymer Blend Captured by Synchronized SAXS, WAXS, and DSC

  • Chuang Wei-Tsung;Jeng U-Ser;Sheu Hwo-Shuenn;Hong Po-Da
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • We conducted simultaneous, small-angle, X-ray scattering/differential scanning calorimetry (SAXS/DSC) and simultaneous, wide-angle, X-ray scattering (WAXS)/DSC measurements for a polymer blend of poly($\varepsilon$-caprolactone)/poly(ethylene glycol)(PCL/PEG). The time-dependent SAXS/DSC and WAXS/DSC results, measured while the system was quenched below the melting temperature of PCL from a melting state, revealed the competitive behavior between liquid-liquid phase separation and crystallization in the polymer blend. The time-dependent structural evolution extracted from the SAXS/WAXS/DSC results can be characterized by the following four stages in the PCL crystallization process: the induction (I), nucleation (II), growth (III), and late (IV) stages. The influence of the liquid-liquid phase separation on the crystallization of PCL was also observed by phase-contrast microscope and polarized microscope with 1/4$\lambda$ compensator.