• 제목/요약/키워드: tac promoter

검색결과 34건 처리시간 0.026초

Development of a Unidirectional Expression Vector: in a Search of Suppressor against a Cell Death-Inducing Protein, Jpk

  • Kong Kyoung-Ah;Park Sung-Do;Kim Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.139-143
    • /
    • 2006
  • Jopock (Jpk) has previously been ascertained that induces both bacterial and mammalian cell death. The Escherichia coli cells expressing Glutathion S-transferase (GST) fused Jpk showed elongated phenotype and inhibited cell growth which led eventual cell death. In an attempt to search the genetic suppressor of the lethal protein Jpk in bacterial cells, we constructed a unidirectional protein expression vector inserting tac promoter next to the C-terminus Jpk in pGEX-Jpk. The function of additional tac promoter was confirmed by substituting lac promoter in Plac-TOPO plasmid. The cells harboring plac- TOPO, which regulates $lacZ{\alpha}$ gene expression under lac promoter, formed blue colonies in 5-bromo-4-3 $indolyo-{\beta}-D-galactoside$ (X-gal) plate. When lac promoter was changed to tac promoter, same results were observed. Since the addition of tac promoter did not affect the toxic effect of Jpk, the pGEX-Jpk-ptac could be a useful vector for the screening of suppressor(s) for Jpk, in which GST-Jpk and a putative Jpk-suppressing protein are coexpressing from two unidirectional tac promoters, which response to the same inducer, $isopropyl-{\beta}-D-thiogalactopyranoside (IPTG)$.

  • PDF

일반 E.coli에서 tac Promoter에 의한 온도감수성 $cI_{857}$ Repressor의 대량생산 (Therrnosensitive $cI_{857}$ Repressor Overproduction by tac Promoter in General E. coli)

  • 강상모;권태종;정호권
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 1991
  • $cI_{857}$ repressor 단백질을 대량으로 얻기위해 tac promoter 하류에 $cI_{857}$ 구조 유전자를 삽입하는 것을 검토하였다. $cI_{857}$ 유전자를 포함하는 DNA 단편을 plasmid PUC12를 이용하여 대량생산후, HphI으로 부분 분해하여 $cI_{857}$ 구조 유전자만을 취하고, tac promoter 하류에 삽입시켰다. 그리고 $\lambda$ phage $cI_{90}$에 의해 $30^{\circ}C$에서는 용원성을, $42^{\circ}C$에서는 용균성을 보이는 균주를 선택함으로 tac promoter 하류에 cI857 구조 유전자가 삽입된 pDR540-$cI_{857}$을 선택할 수가 있었다. 이 plasmid는 $lacI^q$ JM103 뿐만 아니라 각종 E.coli에서 $cI_{857}$-repressor 단백질을 균체 단백질당 약 17까지 생산하였다.

  • PDF

대장균과 Serratia marcescens에서 Serratia marcescens Metalloprotease(SMP) 유전자의 발현 (Expression of Serratia marcescens Metalloprotease(SMP)Gene in Escherichia coli and Serratia marcescens)

  • 김기석;정재연;박군식;김태운;변시명;신용철
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.288-296
    • /
    • 1995
  • To investigate high-level expression of Serratia marcescens metalloprotease (SMP) in Escherichia coli and S. marcescens, we constructed various recombinant plasmids: pSP2, containing SMP gene and lac promoter; pKSP2, containing SMP gene and tac promoter; pTSP2, containing SMP gene, trc99a promoter, and lacI$^{q}$. The recombinant E. coli (pKSP2) strain expressed SMP to a high-level, about 36% of total cellular proteins but accumulated inactive SMP precursors intracellularly, which indicated that E. coli does not have activation and secretion system for SMP. To overproduce active SMP, we transformed S. marcescens with the recombinant plasmids by a modified CaCl$_{2}$ method. The recombinant S. marcescens ATCC27117 (pSP2) containing lac promoter for SMP transcription produced 530 U/ml of active SMP on LB broth, which is about 5.1 times of the SMP yield, 105 U/ml of a control strain, S. marcescens ATCC27117 (pUC19). However, S. marcescens ATCC27117 (pKSP2) containing tac promoter for SMP transcription did not grow healthy and hardly produced SMP. To overcome a harmful effect of the strong tac promoter, we constructed a regulatory plasmid pTSP2 containing a strong trc99a promoter and its repressor gene lacI$^{q}$. When S. marcescens ATCC27117 (pTSP2) was induced with 1.0 mM IPTG after 9 hr cultivation, 2,200 U/ml of SMP was obtained in LB broth, which is about 21 times of that of a control strain.

  • PDF

Pseudomonas sp. Endo-1,4-$\beta$-Glucanase와 $\beta$-1,4-Glucosidase 유전자의 대장균 및 효모에서의 동시 발현 (Simultaneous Expression of Pseudomonas sp. Endo-1,4$\beta$-Glucanase and $\beta$-1,4=Glucisidase Gene in Escherichia coli and Saccharomyces cerevisiae)

  • 김양우;전성식;정영철;성낙계
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.652-658
    • /
    • 1995
  • We attempted simultaneous expression of genes coding for endoglucanase and $\beta $-glucosidase from Pseudomonas sp. by using a synthetic two-cistron svstem in Escherichia coli and Saccharomyces cerevisiae. Two-cistron system, 5'--tac promoter-endoglucanase gene--$\beta $-glucosidase gene-- 3', 5'-tac promoter--$\beta $-glucosidase gene--endoglucanase gene--3' and 5'-tac promoter--endoglucanase gene--SD sequence--$\beta $-glucosidase gene--3, were constructed, and expressed in E. coli and S. cerevisiae. The E. coli and S. cerevisiae contained two-cistron system produced simultaneously endoglucanase and $\beta $-glucosidase. The recombinant genes contained the bacterial signal peptide sequence produced low level of endoglucanase and $\beta $-glucosidase in S. cerevisiae transformants: Approximately above 44% of two enzymes was localized in the intracellular fraction. The production of endoglucanase and $\beta $-glucosidase in veast was not repressed in the presence of glucose or cellobiose. The veast strain contained recombinant DNA with two genes hydrolyzed carboxvmethyl cellulose, and these endoglucanase and $\beta $-glucosidase degraded CMC synergistically to glucose, cellobiose and oligosaccharide. This result suggests the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.

  • PDF

Control of Acetate Production Rate in Escherichia coli by Regulating Expression of Single-Copy pta Using $lacI^Q$ in Multicopy Plasmid

  • Lee, Sun-Gu;Liao, James C
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.334-337
    • /
    • 2008
  • A tightly regulated gene expression system composed of a single-copy target gene under the control of a lac promoter derivative and lacI gene in a multicopy plasmid is proposed, and its ability to control the flux of a metabolic pathway is demonstrated. A model system to control the flux of acetyl-CoA to acetyl phosphate was constructed by integrating pta, a gene encoding phosphotransacetylase, under a tac promoter into the chromosome of E. coli with a pta-negative background and transforming a multicopy plasmid containing the $lacI^Q$ gene into the strain. The production rate of acetate was shown to be tightly controlled when varying the concentration of the inducer (IPTG) in he model system.

PelB Signal Sequence로 유도된 재조합 인간 상피세포 증식인자 분비 발현 벡터의 제조

  • 박세철;남정현;김정근;권태종;고인영;유광현
    • 한국미생물·생명공학회지
    • /
    • 제24권5호
    • /
    • pp.553-559
    • /
    • 1996
  • We have designed nucleotide sequences of hEGF structural gene to eliminate the N-terminal methionine residue incorporated during the translation initiation step, and constructed recombinant human epidermal growth factor (rhEGF) secretion plasmids pYHB101, and pYHB2 in which pelB signal sequence-hEGF gene was expressed under the control of the T7, and tac promoter, respectively. We also constructed pYHB1 vector which contains rhEGF gene controlled by T7 promoter. The transformant with pYHB101 showed relatively slow growth pattern compared to the transformant with pYHB1. However, we observed that the transformant with pYHB101 secreted rhEGF of 13 mg/l significantly after 5 hr induction with 1 mM IPTG and that the T7 promoter was more effective than tac promoter when connected to pelB signal sequence. The amount of rhEGF was 14 mg/l under the sub-optimized condition.

  • PDF

Fermentation and Purification of LacZ-Fused Single Chain Insulin Precursor for($B^{30}$-Homoserine) Human Insulin

  • SeungYup Lee;Jeo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제1권1호
    • /
    • pp.9-12
    • /
    • 1996
  • In order to produce the single chain precursor of a novel human insulin analogue, (B30-Homoserine) insulin, the fermentative behaviors of Escherichia coli JM103 were studied, which harbors pKBA plasmid carrying a hybrid gene in which the gene for a single chain precursor was fused with lacZ gene under tac promoter. The maximal induction of gene expression was achieved when more than 0.05 mM of isopropyl-$\beta$-D-thiogalactopyranoside(IPTG) was supplemented to fermentation medium after 4 h cultivation of E. coli, and followed by longer than 2-h fermentation. The hybrid protein of the single chain insulin precursor was isolated from cytoplasmic inclusion bodies by dissolving in 8M urea solution, and purified through DEAE-Sephacel and Sephadex G-200 column chromatographies with a recovery of 35%. The finally purified hybrid protein showed a single band on sodium dodecyl sulfate-polyacrylamide gel.

  • PDF

Corynebacterium glutamicum에서 분리된 프로모터를 이용한 메치오닌 생합성 유전자의 조절해제 (Derepression of a Methionine Biosynthetic Gene by Utilizing a Promoter Isolated from Corynebacterium glutamicum)

  • 박수동;박익현;최종수;김일권;김연희;이흥식
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.300-305
    • /
    • 2005
  • Corynebacterium glutamicum에서 promoter-probe vector인 pSK1Cat을 이용해 분리된 프로모터를 함유하는 단편들 중 가장 높은 활성을 나타낸 $P_{19}$ 단편에 대한 심도 있는 분석을 수행하였다. Subcloning을 실시하여 프로모터 활성을 지닌 DNA 영역을 180 bp로 압축할 수 있었고 $(P_{180})$, 이를 C. glutamicum의 균주개량 측면에서 그 활용성을 분석하였다. C. glutamicum에서 메치오닌 생합성에 관여하는metX유전자의 메치오닌에 의한 repression을 해제시키기 위하여 metX유전자의 promoter를 $P_{180}$ promoter로 교체하였고 $(P_{180}-metX)$, $P_{180}-metX$를 C. glutamicum에 도입하여 발현되는 homoserine acetyltransferase 활성을 다양한 성장조건에서 측정하였다. MB 영양배지에서 배양하는 경 우 $P_{180}-metX$를 함유는 균주는 wild type보다 약 24배 높은 homoserine acetyltransferase 활성을 나타내었다. Tac 프로모터에 연계하는 경우 $(P_{tac}-metX)$, 약 13배의 활성 증가만이 관찰되었다. 최소배지에서 배양한 후 분석한 결과, $P_{180}-metX$에서의 발현양상은 배지에 첨가된 methionine에 의해 영향받지 앓음을 확인하였는데, 이는 $P_{180}$ 단편이 생합성 유전자의 derepression에 의한 아미노산 생산균의 개량에 효율적으로 이용될 수 있음을 의미한다. $P_{180}-metA$를 라이신 생산균에 도입하는 경우 최대 약 0.8g/l의 메치오닌이 생산됨을 확인하였다.

Degradation of Trichloroethylene by a Growth-Arrested Pseudomonas putida

  • Hahm, Dae-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.11-14
    • /
    • 1998
  • A toluene-oxidizing strain of Pseudomanas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to construct in situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducer such as toluene, we used the carbon-starvation promoter of Pseudomonas putida MK1 (Kim, Y. et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter of Pseudomonas putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed in E. coli cells either in stationary phase or exponential phase. For TMO expression in Pseudomonas strains, tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE(8.9 kb) by deletion of tac promoter and lacIq (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in a Pseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6 ${\mu}$M in liquid phase.

  • PDF

Isolation and Characterization of Transcriptional Elements from Corynebacterium glutamicum

  • Park, Soo-Dong;Lee, Sang-Nam;Park, Ik-Hyun;Choi, Jong-Su;Jeong, Wol-Kyu;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.789-795
    • /
    • 2004
  • A promoter-probe shuttle vector pSK1Cat was constructed for the isolation of transcriptional signal sequences from Corynebacterium glutamicum. Besides conferring resistance to kanamycin in Escherichia coli and C. glutamicum, the vector carried a promoterless cat gene to confer resistance to chloramphenicol upon insertion of the appropriate transcriptional signals in the multiple cloning site. By utilizing the vector, a series of transcriptionally active fragments were isolated from the genome of C. glutamicum. The clones, ranging from 200 bp to 1 kb in size, were grouped into 3 classes of strong, medium, and weak, based on the chloramphenicol acetyltransferase (CAT) activity and sensitivity to the chloramphenicol of the clone-carrying C. glutamicum cells. C. glutamicum cells carrying the $P_{19}$ clone, a representative in the strong class, were able to grow on minimal agar plates containing over $40 mg/mell$ chloramphenicol, and showed CAT activity of 10 m㏖/mgㆍmin, performing slightly better than the cells carrying $P_{tac}$ , a strong E. coli promoter. Subcloning analysis of the $P_{19}$ clone identified a 180 bp intergenic fragment ($P_{180}$), which was located upstream of a gene encoding a hypothetical membrane protein. The expression conferred by $P_{180}$ was not affected by either the kinds of carbon sources or changes in temperature. These properties make the $P_{180}$ clone useful for the deregulated expression of biosynthetic genes in C. glutamicum during amino acid fermentation.