• 제목/요약/키워드: telescope N-complex

검색결과 16건 처리시간 0.052초

COHOMOLOGY OF TORSION AND COMPLETION OF N-COMPLEXES

  • Ma, Pengju;Yang, Xiaoyan
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.379-405
    • /
    • 2022
  • We introduce the notions of Koszul N-complex, Čech N-complex and telescope N-complex, explicit derived torsion and derived completion functors in the derived category DN (R) of N-complexes using the Čech N-complex and the telescope N-complex. Moreover, we give an equivalence between the categories of cohomologically 𝖆-torsion N-complexes and cohomologically 𝖆-adic complete N-complexes, and prove that over a commutative Noetherian ring, via Koszul cohomology, via RHom cohomology (resp. ⊗ cohomology) and via local cohomology (resp. derived completion), all yield the same invariant.

Magnetic Field Structure and Formation Scenario of the N159/N160 Star-Forming Complex in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pyo, Jeonghyun;Pak, Soojong;Park, Won-Kee;Kwon, Jungmi;Tamura, Motohide
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.38.3-39
    • /
    • 2017
  • The N159 and N160 ionized regions in the Large Magellanic Cloud are an important extragalactic star-forming complex. The physical environments and the star formation stages are different in N159 and N160. We performed near-infrared polarimetry to those star forming regions with IRSF/SIRPOL 1.4-m telescope. Near-infrared polarization enabled us to trace the detailed structure of magnetic fields in star-forming regions. Through the polarimetric data of J, H, and Ks bands, we examined the magnetic field structures in the N159/N160 complex. In this presentation, we show complex distribution of the magnetic fields associated with dust and gas structures. We verify the local magnetic fields in each star-forming region, which appear to be related with local environments, such as interior and boundary of shell structure, star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the formation scenario of the N159/N160 complex suggested from the magnetic field structure.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

H$\alpha$ IMAGING AND PHOTOMETRY OF BLUE COMPACT GALAXIES WITH 6-M TELESCOPE

  • NEIZVESTNY S. I.;KNIAZEV A. YU.;LIPOVETSKY V. A.;PUSTILNIK S. A.;UGRYUMOV A. V.;KORABLINA N. B.;ISAENKO V. N.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.77-78
    • /
    • 1996
  • We perfom a large project for complex study of Blue Compact Galaxies (BCGs) with strong star formation, which includes optical spectroscopy, BVR CCD photometry and HI 21 cm radio survey. The most interesting galaxies are studied also with HST and VLA. In the frame of this project we began the study of H$\alpha$ morphology of BCGs with 6-m telescope. We present and discuss here the results for the first 6 galaxies. We found the noticeable variety of forms for H$\alpha$ morphology comparing to broad band images: from very compact HII region in very center of stellar body (Mark 996, possible dwarf post-merger, old galaxy experiencing strong star formation burst), to very extended gas emission encompassing the whole area traced by stars (SBS 0335-052, the most probable young galaxy in formation).

  • PDF

DEEP INFRARED SURVEYS OF STAR FORMING REGIONS IN THE MWG AND LMC

  • NAKAJIMA YASUSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.173-174
    • /
    • 2005
  • On behalf of the IRSF/SIRIUS group, I introduce some recent results from our deep near-infrared surveys (J, Hand Ks bands, limiting magnitude of Ks=17) toward star forming regions in the Milky Way Galaxy (MWG) and Large Magellanic Cloud (LMC) with the near-infrared camera SIRIUS. We discovered a rich population of low-mass young stellar objects associated with the W3 and NGC 7538 regions in the MWG based on the near-infrared colors arid magnitudes. The high sensitivity of our survey enables us to detect intermediate-mass pre-main sequence stars, i.e. HAEBE stars, even in the LMC. We detected many HAEBE candidate stars in the N159/N160 complex star forming region in the LMC with the IRSF 1.4-m telescope. Spatial distributions of the young stellar objects indicate the sequential cluster formation in each star forming region in the complex and large scale (a few ${\times}$ 100 pc) sequential cluster formation over the entire complex.

Near-infrared Polarimetric Study of N159/N160 Star Forming Regions in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pak, Soojong;Pyo, Jeonghyun;Tamura, Motohide
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.67.1-67.1
    • /
    • 2016
  • We observed two star forming regions, N159 and N160, in the Large Magellanic Cloud with SIRPOL, the polarimeter of the Infrared Survey Facility (IRSF) in South Africa. The photometric and polarimetric observations are done in three near-infrared bands, J, H, and Ks. We measured Stokes parameters of point sources and calculated their degrees of polarization and polarization angles. The polarization vector map shows complex features associated with dust and gas structures. Overall features of the magnetic field in N159 and N160 regions are different from each other and appear to be related to local environments, such as interior and boundary of shell structure, existence of star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the relation between the structure of magnetic field and the local properties of dust and gas in N159 and N160 regions by comparing our polarization vector map with images of $H{\alpha}$, mid-infrared, and $^{12}CO$ emissions, respectively by WFI of MPG/ESO telescope, Spitzer IRAC, and NANTEN.

  • PDF

DEVELOPMENT STATUS OF THE DOTIFS DATA SIMULATOR AND THE REDUCTION PACKAGE

  • CHUNG, HAEUN;RAMAPRAKASH, A.N.;PARK, CHANGBOM
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.675-677
    • /
    • 2015
  • A data simulator and reduction package for the Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) has been developed. Since data reduction for the Integral Field Spectrograph (IFS) requires complicated procedures due to the complex nature of the integral spectrograph, common reduction procedures are usually not directly applicable for such an instrument. Therefore, the development of an optimized package for the DOTIFS is required. The data simulator observes artificial object and simulates CCD images for the instrument considering various effects; e.g. atmosphere, sky background, transmission, spectrograph optics aberration, and detector noise. The data reduction package has been developed based on the outcomes from the DOTIFS data simulator. The reduction package includes the entire processes for the reduction; pre-processing, flat-fielding, and sky subtraction. It generates 3D data cubes as a final product, which users can use for science directly.

OPTICAL INVESTIGATION OF THE CRAB PULSAR: SIMULTANEOUS UBVR LIGHT CURVES WITH TIME RESOLUTION OF 3.3 ${\mu}s$ AND SPECTROSCOPY

  • KOMAROVA V. N.;BESKIN G. M.;NEUSTROEV V. V.;PLOKHOTNICHENKO V. L.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.217-218
    • /
    • 1996
  • The results of the Crab pulsar observations with the photometrical MANIA (Multichannel Analysis of Nanosecond Intensity Alterations) complex at the 6-m telescope are presented. More than 12 millions photons in UBVR-bands simultaneously with time resolution of $10^{-7}s$ were detected. Using the original software for search for optical pulsar period, we obtained the light curves of the object with time resolution of about 3.3 ${\mu}s$. Their detailed analysis gives the spectral change during pulse and subpulse, the shape of the pulse peaks, which are plateaus (with the duration of about 50${\mu}s$ for the main pulse), limits for an amplitude of fine temporal (stochastic and regular) structure of pulse and sub pulse and the interpulse space intensity. The results of CCD-spectroscopy of the Crab pulsar show that its summarized spectrum is flat. There are no lines, neither emission nor absorbtion ones. Upper limit for line intensity or depth is $3.5\%$ with the confidence probability of $95\%$.

  • PDF

An exosolar planetary system N-body simulator II

  • Hong, ChaeLin;van Putten, Maurice
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.46.3-47
    • /
    • 2018
  • We present a general N-body exasolar system simulator in anticipation of upcoming searches for exoplanets and even exomoons by next generation telescopes such as James Webb Space Telescope. For habitable zones, traditionally defined by temperature, we here address the essential problem of dynamical stability of planetary orbits. Illustrative examples are presented on P-type orbits in stellar binary systems, that should be fairly common as in Kepler 16b. Specific attention is paid to reduced orbital lifetimes of exoplanets in the habitable zone by the stellar binary, that is propoesed by Maurice van Putten (2017). Especially, we focused on a classic work of complex three-body problem that is well known by Dvorak(1986). We charge his elliptic restricted three-body problem to extend unrestricted three-body problem to look into dynamical motions in view of circumbinary planet, furthermore, we suggest that opposite angular orientation of the planet is relative to the stability of orbits. In here, counter-rotation case is relatively more faster than co-rotation case for being stable. As a result, we find that various initial conditions and thresholds to approach dynamical stability and unstability with unexpectable isolated islands over enormous parameter space. Even, superkeplerian effect of binary is important to habitability of the exoplanet and we can verify that superfaster binary doesn't effect on th planet and increases survivality of planet around the binary.

  • PDF

3-D Shock Structure of Orion KL Outflow with IGRINS

  • Oh, Heeyoung;Pyo, Tae-Soo;Kaplan, Kyle F.;Koo, Bon-Chul;Yuk, In-Soo;Lee, Jae-Joon;Mace, Gregory N.;Sokal, Kimberly R.;Hwang, Narae;Park, Chan;Park, Byeong-Gon;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.38.3-38.3
    • /
    • 2018
  • We present the results of high-resolution near-IR spectral mapping toward the Orion KL outflow. In this study, we used the Immersion Grating Infrared Spectrometer (IGRINS) on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. IGRINS's large wavelength coverage over the H & K bands and high spectral resolving power (R ~ 45,000) allowed us to detect over 35 shock-excited ro-vibrational H2 transitions and to measure directly the gas temperature and velocity of the dense outflows. In our previous study toward the H2 peak 1 region in the Orion KL outflow, we identified 31 outflow fingers from a datacube of the H2 1-0 S(1) $2.122{\mu}m$ line and constructed a three-dimensional map of the fingers. The internal extinction (${\Delta}AV$ > 10 mag) and overall angular spread of the flow argue for an ambient medium with a high density (105 cm-3). In this presentation, we show preliminary results of additional mapping toward a remarkable chain of bows (HH 205 - HH 207) farther from the ejection center, and obtain a more clear view of the shock physics of a single isolated bullet that improves on the knowledge gained from observations of the more complex peak 1 region in our earlier study.

  • PDF