• Title/Summary/Keyword: temperature sensor

Search Result 3,075, Processing Time 0.033 seconds

Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature (손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

Small CMOS Temperature Sensor Using MOSFETs in the Intermediate-Inversion Region

  • Park, Tai-Soon;Park, Sang-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1086-1087
    • /
    • 2009
  • A small temperature sensor is designed in a 0.35um CMOS process. Transistors operating in the intermediate inversion region are employed in the core of the sensor. This temperature sensor operates in $-50^{\circ}C{\sim}120^{\circ}C$ with ${\pm}2^{\circ}C$ of accuracy after two-point calibration. This temperature sensor can be placed in the active pixel area of a display panel to measure the temperature of the display panel for temperature compensation.

  • PDF

Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity (수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조)

  • Song, Nak-Chun;Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Fiber-optic interferometric temperature sensor using a hollow fiber (중공 광섬유를 이용한 광섬유 간섭계형 온도센서)

  • Park, Jae-Hee;Kim, Kwang-Taek
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.192-196
    • /
    • 2007
  • A fiber-optic interferometric temperature sensor is fabricated using a hollow optical fiber with 8 um air hole. This interferometric sensor for measuring temperature consists of 13 mm long hollow optical fiber whose one end is attached to the single mode fiber and the other end is cleaved. After the sensor is put in a furnace, the phase change of the sensor output signal is measured as the temperature of the furnace increases from $28^{\circ}C$ to $100^{\circ}C$. The phase change of the fiber sensor is proportional to the change of temperature and the relationship between the change of phase and temperature is approximately linear. The sensitivity of this sensor is $2.7{\;}radians/^{\circ}C$.

Temperature sensor without reference resistor by indium tin oxide and molybdenum (인듐틴옥사이드와 몰리브데늄을 이용한 외부 기준 저항이 필요 없는 온도센서)

  • Jeon, Ho-Sik;Bae, Byung-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.483-489
    • /
    • 2010
  • Display quality depends on panel temperatures. To compensate it, temperature sensor was integrated on the panel. The conventional temperature sensor integrated on the panel needs external reference resistor. Since the resistance of external resistor can vary according to the variation of the environment temperature, the conventional temperature sensor can make error in temperature sensing. The environmental temperatures can change by the back light unit, driving circuits or chips. In this paper, we proposed a integrated temperature sensor on display panel which does not need external reference resister. Instead of external reference resistor, we used two materials which have different temperature coefficient in resistivity. They are connected serially and the output voltage was measured at the point of connection with the applied voltage to both ends. The proposed sensor was fabricated with indium tin oxide(ITO), and Mo metal electrode temperature sensor which were connected serially. We verified the temperature senor by the measurements of sensitivity, lineality, hysteresis, repeatability, stability, and accuracy.

Optimal filter design at the semiconductor gas sensor by using genetic algorithm (유전알고리즘을 이용한 반도체식 가스센서 최적 필터 설계)

  • Kong, Jung-Shik
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • This paper is about elimination the situation in which gas sensor data becomes inaccurate due to temperature control when a semiconductor gas sensor is driven. Recently, interest in semiconductor gas sensors is high because semiconductor sensors can be driven with small and low power. Although semiconductor-type gas sensors have various advantages, there is a problem that they must operate at high temperatures. First temperature control was configured to adjust the temperature value of the heater mounted on the gas sensor. At that time, in controlling the heater temperature, gas sensor data are fluctuated despite supplying same gas concentration according to the temperature controlled. To resolve this problem, gas and temperature are extracted as a data. And then, a relation function is constructed between gas and temperature data. At this time, it is included low pass filter to get the stable data. In this paper, we can find optimal gain and parameters between gas and temperature data by using genetic algorithm.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

A High Accuracy and Fast Hybrid On-Chip Temperature Sensor (고정밀 고속 하이브리드 온 칩 온도센서)

  • Kim, Tae-Woo;Yun, Jin-Guk;Woo, Ki-Chan;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1747-1754
    • /
    • 2016
  • This paper presents a high accuracy and fast hybrid on-chip temperature sensor. The proposed temperature sensor combines a SAR type temperature sensor with a ${\Sigma}{\Delta}$ type temperature sensor. The SAR type temperature sensor has fast temperature searching time but it has more error than the ${\Sigma}{\Delta}$ type temperature sensor. The ${\Sigma}{\Delta}$ type temperature sensor is accurate but it is slower than the SAR type temperature sensor. The proposed temperature sensor uses both the SAR and ${\Sigma}{\Delta}$ type temperature sensors, so that the proposed temperature sensor has high accuracy and fast temperature searching. Also, the proposed temperature sensor includes a temperature error compensating circuit by storing the temperature errors in a memory circuit after chip fabrication. The proposed temperature sensor was fabricated in 3.3V CMOS $0.35{\mu}m$ process. Its temperature resolution, power consumption, and area are $0.15^{\circ}C$, $540{\mu}W$, and $1.2mm^2$, respectively.