• Title/Summary/Keyword: tempered materials

Search Result 118, Processing Time 0.024 seconds

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile (자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

A Study on the Machining Characteristics of Engine Cap Meterials for a Automobile (자동차 엔진 캡 소재의 절삭 특성에 관한 연구)

  • 채왕석;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-188
    • /
    • 1995
  • In this paper, We have analyzed dynamic characteristics of cutting force. Test materials are used in the tempered carbon steek and non-tempered carbon steel. The obtained results ase as follows: 1. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed make a change. 2. Specific cutting force is smaller non-tempered carbon steel than tempered caron steel when cutting depth make a change

  • PDF

Effect of Cr and Mo Contents on Hydrogen Embrittlement of Tempered Martensitic Steels (템퍼드 마르텐사이트강의 수소취성에 미치는 Cr 및 Mo 함량의 영향)

  • Sang-Gyu, Kim;Jae-Yun, Kim;Hee-Chang, Sin;Byoungchul, Hwang
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.466-473
    • /
    • 2022
  • The effect of Cr and Mo contents on the hydrogen embrittlement of tempered martensitic steels was investigated in this study. After the steels with different Cr and Mo contents were austenitized at 820 ℃ for 90 min, they were tempered at 630 ℃ for 120 min. The steels were composed of fully tempered martensite with a lath-type microstructure, but the characteristics of the carbides were dependent on the Cr and Mo contents. As the Cr and Mo contents increased, the volume fraction of film-like cementite and prior austenite grain size decreased. After hydrogen was introduced into tensile specimens by electrochemical charging, a slow strain-rate test (SSRT) was conducted to investigate hydrogen embrittlement behavior. The SSRT results revealed that the steel with lower Cr or lower Mo content showed relatively poor hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the tempered martensitic steels increased with increasing Mo content, because the reduction in the film-like cementite and prior austenite grain size plays an important role in improving hydrogen embrittlement resistance. The results indicate that controlling the Cr and Mo contents is essential to achieving a tempered martensitic steel with a combination of high strength and excellent hydrogen embrittlement resistance.

The Effects of the Tempered Materials on the Thermal Runaway Characteristics in the Resol Resin Synthesis Reaction (레졸수지 합성반응에서 온도조절 물질이 열폭주 특성에 미치는 영향)

  • Lee, Jung-Suk;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2014
  • In this study, we evaluated an effect of the tempered materials on the thermal runaway characteristics in the resol resin synthesis reaction using the adiabatic calorimetry of vent sizing package 2(VSP2). The kinetic parameters, such as an activation energy and heat of reaction, were estimated using the test results. As the results, the instantaneous characteristics to express the intensity of runaway reaction decreased at the low solid content. However, the sudden loss of the tempered materials triggered the second runaway reaction rapidly. In this condition, the heat of reaction and the activation energy of phenol and p-formaldehyde were about 157 kJ/mol and 60 kJ/mol, respectively.

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

Effects of Heat Treatments on Microstructure , Hardness and Abrasive Wear Resistance in 3%C-10%Cr-5%Mo-5%W White Cast Iron (3%C-10%Cr-5%Mo-5%W 백주철에 있어서 열처리가 현미경조직, 경도 및 내마모성에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • White cast iron of 3%C-10%Cr-5%Mo-5%W was casted, and then heat treated with three different methods such as homogenizing, austenitizing and tempering to observe its effects on the microstructure, hardness and abrasive wear resistance. In uni-directional soldification, bamboo tree-like $M_7C_3$ carbide grew along with the heat flow direction, and fishbone-like $M_6C$ carbide was dispersed randomly among $M_7C_3$ carbides. While almost pearlitic structures were observed in the as-cast specimen, those of the heat treated specimens consisted of secondary carbide, retained austenite and tempered martensite. In austenitized specimen, the amounts of retained austenite were 60.88% due to the higher cooling rate encountered in forced air cooling. On the other hand, the amounts of retained austenite were reduced from 60.88% to 23.85% in tempered specimen due to the transformation of austenite into tempered martensite. The hardness of tempered specimen showed the highest value, and then decreased in the order of austenitized, as-cast and homogenized specimens. But, the abrasive wear resistance of austenitized specimen was the highest, and then decreased in the order of tempered, as-cast and homogenized specimens.

  • PDF

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF

Study for Recovery Silicon and Tempered Glass from Waste PV Modules (태양전지(太陽電池) 폐(廢) 모듈로부터 실리콘 및 강화(彈化)유리 회수(回收)에 관(關)한 연구(硏究))

  • Kang, Suk-Min;Yoo, Sung-Yeol;Lee, Jin-A;Boo, Bong-Hyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • We devised a procedure for the recovery of silicon and tempered glass from waste photovoltaic (PV) modules using optimized conditions. The tempered glass was recovered without any damage using organic solvents. The surface material is removed by applying an acid solution on the surface of the PV cell. Through our proposed method, we offer a much more efficient approach for recycling solar cells with a surfactant than the conventional method. This process, we obtained pure silicon with a yield of 90% by chemical treatment with the surfactant at room temperature for 18 min. The silicon yield was characterized using an inductively coupled plasma-atomic emission spectrometer.