• Title/Summary/Keyword: tensile lest

Search Result 4, Processing Time 0.019 seconds

Friction welding of high speed steel to carbon steel and AE evaluation (고속도강과 탄소공구강의 마찰용접 및 AE 평가)

  • 이원석;윤인진;전태언;오세규
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.114-117
    • /
    • 1995
  • A study of friction welding of high speed steel(SKH51) bar for blade side to carbon steel(STC3) bar for shank side was carried out experimentally through tensile test, hardness lest, microstructure, and acoustic emission (AR) test. So, this paper deals with optimizing the welding conditions and the real-time quality(strength) evaluation of friction welded joints by acoustic emission technique.

  • PDF

A Study on the Preparation of Wood-Polymer Composites with Recycled PE films (재활용 PE수지를 이용한 Wood-Polymer Composites 제조에 관한 연구)

  • Kim, Ryeun-Kwan;Kang, Min;Kim, Hea-Tae;Song, Byung-Sun;Yoon, Tae-Ho
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 1999
  • Wood-Polymer Composites (WPC) m s prepared irom recycled films of agricullural use and wood wastes, and LLDPE and neal PE resin mlxlurr war also utilized in order to cornpiue the praperlies. Molc~ca nhydride (MA) and dicumyl peroxide were used as an adheslon pmmoler and an il~lliatotor~, .espcmivelyT. ensile prapenies of W Cw zrc measured via lenslle test as a funclieu of woad lille~m d MA contmt, and rractu1.e surface was also mvestigaled wilh SEM. As the content of wwd tiller mcreased, clongauon deneased bul modulus increased However, tensile slrength OI WPC increased only when MA war used, and 1 wt.% of MA may be hgh enough to increase the tensile properties. The tensilc ptopcrlies af WPC prepwed from recycled PE films were &nost same as thosc of neal PE resin mixture.

  • PDF

An Analysis of Coherence and Resilience Depending on Materials Mixing Ratio in Elastic Landscape Pavement (조경용 탄성포장의 재료 배합비에 따른 결합력과 탄성분석)

  • Park, Won-Kyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The demand for elastic pavement, providing comfort for pedestrians is expected to increase continuously but the lack of a standard for materials mixing ratio, that is, the optimal mixing ratio between ERDM chip and polyurethane binder, is still in a trial and error stage. This study aimed at recommending an optimal mixing ratio for elastic landscape pavement through a coherence and resilience test depending on ratio. The test result is outlined as follows. In a tensile strength test, samples B and C indicated a close positive relationship between the binder mixing ratio and tensile strength, indicating that the higher the mixing ratio the higher the tensile strength. In a hardness test, none of samples A, B or C indicated a statistical interrelationship between the binder mixing ratio and hardness. That is, the hardness of the elastic pavement material remained unchanged, irrespective of the binder mixing ratio. In a resilience lest, Samples A and B indicated a close negative interrelation between mixing ratio and resilience, indicating that the higher the mixing ratio, the lower the resilience. Upon analyzing the optimal mixing ratio based on test results, an increase in tensile strength began to slow at a 20% mixing ratio, while resilience began to reduce rapidly at 22%, Thus the optimal range for a mixing ration appeared to be 20~22%. The outcome of this study could to provide guidance for improving the elasticity and stability of elastic pavement.

A Comparative Study on the Retention of Implant Overdenture According to the Shape and the Number of Magnetic Attachment (자성 어태치먼트의 형태와 수에 따른 하악 임플란트 피개의치의 유지력에 대한 비교 연구)

  • Seo, Min-Ji;Lee, Joon-Seok;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • The aim of this study was to compare the retention and stability of implant overdenture according to the shape and the number of magnetic attachment. The experimental groups were designed for the number of implants(1, 2, 4) and shape of magnetic attachments(flat, cushion, dome type) resulting in 9 subgroups. 45 attachments were tested attached to $Br{\aa}nemark$ system implants which were planted on a mandibular model. Each attachment was composed of the magnet assembly embedded in a overdenture sample and the abutment keeper screwed into the implants. Dislodging tensile forces were applied to the overdenture samples using an Instron(cross-head speed 50.80mm/min) in 3 directions simulating function: vertical, oblique, and anterior-posterior. The loading was repeated 10 times in each direction for 45 samples. The values of maximum dislodging force of each subgroup were processed statistically using SPSS V. 12.0 at the 0.05 level of significance. The results of this study were as follows: 1. Flat type magnetic overdenture was the most retentive when subjected to vertically directed forces and dome type was the lest retentive when subjected to obliquely directed forces(p<0.05). 2. In case of planting one implant, flat type had a higher vertically retentive force than anterior-posteriorly retentive force. In case of planting two implants, flat type and dome type had a higher vertically retentive force and in case of planting four implants, flat type and cushion type had a higher vertically retentive force than anterior-posteriorly retentive force(p<0.05). 3. The incremental number of dental implant, without regards to the three types of magnetic attachment shapes, showed higher retention of overdenture(p<0.05). From the results, if a patient need much more retention of implant overdenture, flat type magnetic overdenture would be a good treatment. In case of the bruxism where excessive lateral forces are already present, dome type could be expected to produce better results. In case of planting one implant, flat type is more stable than the other shape of magnet and in case of two implant, flat type and dome type are more stable and in case of four implants, flat type and cushion type are more stable. Planting more than two implants and using flat type magnetic attachment would provide better retention and stability of implant overdenture