• Title/Summary/Keyword: the same structure

Search Result 5,143, Processing Time 0.054 seconds

Discussion of a Model Standard Carbody of Rolling Stocks (철도차량 표준 차체 모델 고찰)

  • Choi, Yun-Suk;Kwak, Tea-Ho;Kim, Ku-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2626-2631
    • /
    • 2011
  • In recent carbody design of rolling stocks, the development of a new carbody structure rather than designing the carbody structure by applying a proven new way to design the carbody structure has been applied. Structural requirements of the carbody being equal, the same applies to the carbody structure means that it is possible to design a carbody structure. By kinematic envelope & speed and the environment, etc., the carbody design is in progress. Accordingly, if all conditions are the same as the existing carbody structure by the same criteria is that you can go get the same. Rather than developing a new carbody structure, carbody structure by applying proven that safety is secured is made possible. Proven standard model of the carbody structure of rolling stocks to secure a new carbody design has made it possible to apply. In addition, the size of the different carbody but structural requirements are the same body design is easier to be expected. In this paper, a model standard carbody of rolling stocks is chosen and of a new carbody design that can be applied to the carbody design will attempt to demonstrate the case.

  • PDF

A Study on Moisture Related Properties and Human Sensations of Underwear (1) -A Study on Water and Water Vapor Transport characteristics of Underwear Fabrics- (시판 내의류소재의 수분특성 및 착용감에 관한 연구 (I) -시판 내의류 소재의 수분특성-)

  • 이순원
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 1988
  • The purpose of this study is to investigate water and after vapor transport characteristics of underwear fabrics. Experimental materials were cotton woven fabric and cotton knitted fabric, nylon tricot (untreated and hydrophilic finished) and cotton/polyester/cotton triple layer. Cotton knitted fabric have three types of knit structure (interlock, rib, plain stitch) and knit with either 38's or 60's combed yarn. And cotton woven fabric have plain weave with 60's combed yarn. As experimental methods, vapor cup test, dynamic method, vertical wicking test and transplanar uptake test were used. The results are as follows. 1) In cotton specimens, the order of water vapor transpiration (wvt) was plain > rib > interlock in the same yarn diameter. The knit fabric of thinner yarn showed the better wvt among the same knit structure. 2) In cotton specimens, the order of water absorbency was interlock > rib > plain in the same yarn diameter. the knit fabric of thicker yarn showed the better absorbency among the same knit structure. 3) When knit fabric (60's plain) is compared with woven fabric 960's plain), knit fabric showed faster rate of wvt, more amount of uptake and slower rate of water uptake than woven fabric did. 4) When compared untreated nylon with hydrophilic finished nylon, hydrophilic finished nylon showed much more water absorbency than untreated nylon did, but showed same rate of wvt. 5) The water transport characteristics of triple layer underwear fabric showed that the thinner and the lighter one, the better wvt and absorbency did.

  • PDF

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

Analysis and Design of 750kW Nacelle Cover (750kW 나셀커버 구조해석 및 설계)

  • Park, Jae-Hyun;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.295-298
    • /
    • 2008
  • The major function of the nacelle cover is protecting the inside equipments. Therefore, it is required not only sufficient strength and stability but also light weight. In this paper, design loads are calculated according to the GL Wind guideline Ed. 2003. To ensure the structural safety, a composite structure is selected. The structural design is processed by two steps which are preliminary design and detail design. In the preliminary design step, a structural analysis is performed with initial thickness, 5mm. As reviewing above analysis results, weak regions of the nacelle cover reinforced using the spar cap structure which is same as the blade structure. In the analysis model, the support structure is connected with the nacelle cover and analyzed its structural safety at the same time.

  • PDF

Morphological Passivization and the Change of Lexical-Semantic Structures in Korean

  • Kim, Yoon-shin
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.195-204
    • /
    • 2002
  • The purpose of this paper is to analyze the lexical-semantic structure of morphologically derived passive verbs in Korean based on Pustejovsky (1995)'s Generative Lexicon Theory (GL) and to explain the change of the root verb's lexical-semantic structure by means of passivization. Passivization in this paper is defined as the unaccusaztivization. In Argument Structure of derived passive verbs, the agent argument is deleted and the theme argument is realized as a syntactic subject. As for Event Structure, derived passives express left-headed event (achievement), whereas their roots denote right-headed event (accomplishment). In Qualia Structure, passive verbs and root ones have the same Fomal Role, but in Agentive Role of passive verbs, an act weakens to a process. Both Formal and Agentive Roles have the same theme argument.

  • PDF

Coherent Structure Extraction from 3-Dimensional Isotropic Turbulence Velocity Field Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 3차원 등방성 난류속도장의응집구조 추출)

  • Lee, Sang-Hwan;Jung, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1032-1041
    • /
    • 2004
  • In this study we decompose the 3-dimensional velocity field of isotropic turbulent flow into the coherent and the incoherent structure using the discrete wavelet. It is shown that the coherent structure, 3% wavelet modes, has 98% energy and 88% enstrophy and its statistical characteristics are almost same as the original turbulence structure. And it is confirmed that the role of the coherent structure is that it produces the turbulent kinetic energy at the inertia range then transfers energy to the dissipation range. The incoherent structure, with residual wavelet modes, is uncorrelated and has the Gaussian probability density function but it dissipates the kinetic energy in dissipation range. On the procedure, we propose a new but easy way to get the threshold by applying the energy partition percentage concept about coherent structure. The vorticity field extracted from the wavelet-decomposed velocity field has the same structure as the result of the precedent studies which decomposed vorticity field directly using wavelet. Therefore it has been shown that velocity and vorticity field are on the interactive condition.

Seismic reliability analysis of structures based on cumulative damage failure mechanism

  • Liu, Qiang;Wang, Miaofang
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.519-526
    • /
    • 2020
  • Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.

Recrystallization Behaviors of Ordered and Disordered Structures in Ll2 Type Ni3Fe Alloy (Ll2형 Ni3Fe 합금에서 규칙격자와 불규칙격자의 재결정거동)

  • Choi, C.S.;Kang, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.47-53
    • /
    • 1991
  • Recrystallization behaviors of ordered and disordered structures in $Ll_2$ type $Ni_3Fe$ alloy were studied through hardness measurement and differential thermal analysis. When the disordered structure was isothermally aged at $480^{\circ}C$ below order-disorder transition temperature, the hardness of the structure was increased due to progressive ordering with increasing aging time. The hardness of the disordered structure was increased rapidly with increasing deformation degree up to 10%, and then gradually increased with further deformation degree. while the hardness of the ordered structure was increased rapidly with increasing deformation degree up to 10%, showing a constant hardness value up to 50% and gradually decreased with further deformation degree. The hardness of the ordered structure was higher than that of the disordered structure at all same deformation degrees. The recrystallization temperature of the ordered and disordered structures were decreased with increasing deformation degree. At the same deformation degrees, the recrystallization temperature of the ordered structure was lower than that of the desordered structure.

  • PDF

A Research on the Reconstruction of Wooden Frame Structure of Kumdang in Yongamsaji (영암사지(靈巖寺址) 금당의 목조 가구구조(架構構造) 복원에 관한 연구)

  • Yoon, Chae-Shin
    • Journal of architectural history
    • /
    • v.19 no.5
    • /
    • pp.25-47
    • /
    • 2010
  • The purpose of this study is to reconstruct the wooden frame structure of Buddhist temple, Kumdang in Youngamsaji which assumed to be built in the 9th century of Unified Silla Dynasty. The remaining site of Kumdang in Youngamsaji is investigated thoroughly with a particular attention to bay size and column distribution. The five ancient Buddhist temples which were built in the same period also have the same frame type as Youngamsaji Kumdang. These five ancient Buddhist temples and Kumdang in Youngamsaji are meticulously investigated in terms of their bay sizes and measuring modules. The framework schema is devised as a conceptual tool to conjecture wooden frame structures of Buddhist temple. A theoretical differentiation between frame type and frame structure is attempted to formulated a wooden frame structure as a stepping-stone for the reconstruction of traditional wooden building. The wooden frame structure of 9C Kumdang in Youngamsaji mainly follows the oldest Korean wooden pavilion, Muryangsujeon in Busuk temple, with a hip and gable roof. The wooden frame structure of 9C Kumdang in Youngamsaji is reconstructed through 3D computer modeling to such an extent that every wooden components of the structure can be 3D printed. The reconstruction also takes reference from the Cai-Fen system in Yingzao Fashi.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.