• Title/Summary/Keyword: thermal aging property

Search Result 59, Processing Time 0.034 seconds

Improving Thermal Resisting Property of PZT Ceramics by Thermal Aging (열에이징에 의한 PZT세라믹스의 내열특성 개선)

  • Lee, Gae-Myung;Kim, Byung-Hyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • Temperature stabilities of resonance frequencies of the substrates are very important in piezoelectric ceramics oscillators and fitters. In this study, it was investigated thermal resisting property of the length-extensional vibration mode of PZT ceramics. The mode can be utilized in fabricating ultra-small 55 kHz IF devices. We fabricated the ceramic specimens with x = 0.51, 0.52, 0.53, 0.54, and 0.55 in the Pb(Zr$\sub$x/Ti$\sub$1-x/)O$_3$ system. And their resonance frequencies were measured before 1st thermal aging, after 1st and 2nd thermal aging. In order to investigate the influence of thermal aging on thermal resisting properties, thermally aged specimens were once mote thermally aged. Before 1st thermal aging, the specimens of the compositions with morphotropic phase, x = 0.53 and rhombohedral phase, x = 0.54 have weak thermal resisting property of resonance frequency, while tetragonal phase, x = 0.51 has robust thermal resisting property of resonance frequency. 1st thermal aging improved thermal resisting property of resonance frequency in all specimens.

Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing

  • Kim, Dookie;Oh, Ju;Do, Jeongyun;Park, Jinyoung
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • Laminated rubber bearing is very popular base isolation of earthquake engineering pertaining to the passive structural vibration control technologies. Rubber used in fabricating NRB and LRB can be easily attacked by various environmental factors such as oxygen, heat, light, dynamic strain, and organic liquids. Among these factors, this study carried out thermal aging test to investigate the effect of thermal aging on the mechanical properties of laminated rubber bearings in accelerated exposure condition of $70^{\circ}C$ temperature for 168 hours. The compressive-shear test was carried out to identify the variation of compressive and shear properties of the rubber bearings before and after thermal aging. In contrast to tensile strength and elongation tests, the hardness of rubber materials showed the increasing tendency dependent on exposure temperature and period. Based on the test results, the property changes of rubber bearing mainly aged by heat are quantitatively presented.

Study on the thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-Wait-Search method) & isothermal conditions (ARC(Heat-Wait-Search method)와 isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Jinseuk;Kim, Seunghee;Kwon, Kuktae;Chu, Chorong;Jeon, Yeongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.172-178
    • /
    • 2017
  • Thermal property is one of the important characteristic in the field of energetic materials. As the energy material is released during decomposition, DSC(Differential Scanning Calorimetry) is frequently used for the thermal analysis. In case of the dynamic DSC measurements, thermal dynamic change like melting is prevented from the thermal property measurements. And due to the predicting kg scale, the conditions of the heat exchange with the environment significantly is changed. In this study, As the method to resolve the problem, we predict the thermal aging property using the AKTS thermokinetic program from DSC measurements which performed isothermal method. Predicting the thermal aging properties from ARC(Accelerating Rate Calorimetry) measurement, we compare two results.

  • PDF

Evaluation of Microstructure and Mechanical Property of Inconel 600 Degraded under High Temperature (고온 열화된 Inconel 600강의 미세조직 및 기계적 특성 평가)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.492-497
    • /
    • 2017
  • In this study, we investigated the effect of thermal aging on mechanical characteristics of Inconel 600 nickel-based alloy. The thermal aging was conducted up to 1000 hours at an atmosphere of $650^{\circ}C$. The microstructure of thermally aged specimens was investigated by an optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). In addition, tensile test (strain rate: 2 mm/min) and micro Vickers hardness test were conducted to evaluate mechanical properties with time. As a result of the experiment, Cr-rich carbide continuously precipitated during thermal aging, leading to the change of the mechanical characteristics and fracture mode. With the increase of aging time, tensile strength, yield strength, and hardness gradually decreased. The fracture mode changed from ductile to brittle with the increase of grain boundary carbide.

The Thermal Performance of Building Insulation Materials According to Long-Term Aging (건축용 단열재의 장기 경시변화에 따른 열성능 특성)

  • Choi, Bo-Hye;Kang, Jae-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.617-623
    • /
    • 2013
  • This study is to draw thermal property data during long-term aging, by testing the thermal conductivity of building insulation materials in Korea. The thermal resistance of extruded insulation within 3 days from manufacture performed well over the KS Standard. After 50 to 110 days, however, the thermal performance had deteriorated to the level of the KS standard. Eventually, after 4,000 days, the insulation performance had deteriorated to about 25.4~41.8% of the initial performance. Therefore, this research will be utilized as a reference for thermal properties during long-term aging, in order to improve standards and regulations related to building insulation materials.

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Studies on the aging behavior of coated paper(III) - The application of new coating binder for anti-thermal aging - (도공지 노화에 관한 연구(III) - 도공지 노화방지를 위한 새로운 도공용 바인더 적용 -)

  • Sin, U-Seul;Kim, Sun-Kyung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.339-347
    • /
    • 2011
  • This study was carried out in order to manufacture the high quality coated paper. High quality coated paper includes not only present state but also the state of the future. So in this study, acrylic-styrene emulsion which polymerized in laboratory was compared with SB(Styrene-butadiene) latex during thermal aging. The coated paper with three different formulations which controlled the dosage of acrylic-styrene emulsion were prepared. The coated paper were thermally aged at $105^{\circ}C$ for 18days and the optical properties were measured. Brightness, whiteness and CIE L value were higher during thermal aging with increasing amount of acrylic-styrene emulsion. CIE $a^*$ value was higher and CIE $b^*$ value decreased with increasing amount of acrylic-styrene emulsion. These results indicate that high quality coated paper which has anti -thermal aging property can be manufactured with acrylic-styrene emulsion.

  • PDF

Analysis of Phase Separation by Thermal Aging in Duplex Stainless Steels by Magnetic Methods

  • Kim, Sunki;Wonmok Jae;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.361-367
    • /
    • 1997
  • The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM(Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni ternary, and Fe-Cr-Ni-Si quarternary allots, were aged at 370 and 40$0^{\circ}C$ up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These result are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370~40$0^{\circ}C$ In cases of specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich $\alpha$ phase and Cr-rich $\alpha$' phase.

  • PDF

Thermal Aging Properties of NR Vulcanizates with Different Cure Systems (가교 시스템이 다른 NR 가황물의 열노화 특성)

  • Choi, Sung-Seen;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Changes of physical properties or NR vulcanizates with different cure systems by thermal aging were investigated. Two sulfur cure systems and one resole cure system were employed, and total contents of the curatives were varied. For the NR vulcanizates with sulfur cure systems, hardness and modulus after the thermal aging at $90^{\circ}C$ for 3 days were increased, but elongation at break and tensile strength were decreased. For the NR vulcanizates with resloe cure system, the physical properties after the thermal aging were decreased. The change of physical properties by the thermal aging was explained with the crosslink density change. The crosslink densities or the NR vulcanizates with sulfur cure systems were increased after the thermal aging, but those with resole cure system were decreased. Influence of the migration of antidegradant on the changes of physical properties was also investigated. However, the changes of physical properties by the thermal aging were not explained sufficiently with the migration of antigradant.

A Study on the Mechanical Properties Change by Stress Aging of 2.25Cr-1Mo Steel (2.25Cr-1Mo 강의 응력 시효에 의한 기계적 특성 변화에 대한 연구)

  • Yang, Hyun-Tae;Kim, Sang-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.517-522
    • /
    • 2001
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature and stress for 250 hours. Original, aged artificially material were tested to obtain the hardness and impact absorbed energy. Hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

  • PDF