• Title/Summary/Keyword: thermo-elastic system

Search Result 29, Processing Time 0.031 seconds

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Topology Optimization of Actuator for Thermo-Elastic Systems (열-탄성계를 고려한 엑추에이터 위상 최적설계)

  • Lim, O-Kaung;Kim, Dae-Woo;Choi, Eun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.683-690
    • /
    • 2007
  • Topology optimization techniques have been developed as a very efficient design tool and utilized for design engineering processes in many industrial sections during the past decade. And topology optimization has become the focus into structural optimization design up to now. Recently, thermally actuated compliant mechanisms have a wide range of applications. In this research, the thermo-elastic problem is a coupled problem which has to consider heat transfer analysis and structural analysis. Hence, the thermo-elastic problem has to deal with heat transfer material properties and structural material properties at the same time. The numerical examples are presented. From the results, it was shown that in terms of the displacement after optimization. Moreover, this paper compared thermo-system, elastic-system with thermo-elastic system and was shown a good result of topology optimization while thermo-elastic system was used.

Simulation Method for Thermal appropriate Desing of Compound Cylinder using Bondgraph Modeling (원통결합부의 열특성 최적설계를 위한 예측 시뮬레이션 방법)

  • 민승환;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.635-640
    • /
    • 1996
  • A thermo-elastic system in the production machine has highly nonlinear dynamic characteristics. In general, the finite element method is utilized for accurate analysis. However, it requires large computing time. Thus, thermo-elastic systems are usuallymodeled as electric and fluid system using lumped para,eter. In this paper. we propose the bondgraph model and transient simulation methodology of thermo-elastic system in consideration of various boundary and joint contact conditions. Consequently, the proposed method ensures a possibility of its on-line compensation about undesirable phenomena by using real time estimate process and electronic cooling device for thermal appropriate behavior. Thermo-elastic model consisting of bush and shaft including contact condition is presented.

  • PDF

Thermo-elastic Creep and Frequency Optimization by Using Feasible Direction Method (Feasible Direction Method를 사용한 열.탄성.크리프 및 진동수에 대한 최적화)

  • Jo, Hui-Geun;Park, Yeong-Won;Gang, Yeon-Sik;Lee, Gyeong-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.857-865
    • /
    • 2001
  • In finite element analysis, engineering optimizations are divided two major parts that are topology and structural optimization. Until these days most structural optimizations usually concentrate on single disciplinary optimization. Therefore numerical analysis and methodology which can optimize thermo-elastic creep and frequency phenomena are not suggested. In this paper finite element analysis methodology and algorithm of thermo -elastic creep and frequency optimizations are suggested and corroborate the efficiency of suggested new numerical methodology and algorithm by solving example problem.

Thermo-Elastic Analysis for Chattering Phenomenon of Automotive Disk Brake

  • Cho, Chongdu;Ahn, Sooick
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.569-579
    • /
    • 2001
  • This study investigates the effects of operating conditions on the chattering of an automotive disk brake by experimental and computational methods. Design factors, which cause chattering in automobiles, have attracted great attentions for long time; but they are not well understood yet. For this study, we construct a brake dynamometer for measuring the disk surface temperature during chattering, and propose an efficient hybrid algorithm (combining FFT-FEA and traditional FEA program) for analyzing the thermo-elastic behavior of three-dimensional brake system. We successfully measure the judder in a brake system via the dynamometer and efficiently simulate the contact pressure variation by the hybrid algorithm. The three-dimensional simulation of thermo-mechanical interactions on the automotive brake, showing the transient thermo-elastic instability phenomenon, is presented for the first time in this academic community. We also find from the experimental study that the disk bulk temperature strongly influences the brake chattering in the automotive disk brakes.

  • PDF

Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation

  • Amir, Saeed;Khani, Mehdi;Shajari, Ali Reza;Dashti, Pedram
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Static and dynamic instability of a viscoelastic carbon nanotube (CNT) embedded on a thermo-elastic foundation are investigated, in this research. The CNT is modeled based on Euler-Bernoulli beam (EBB) and nonlocal small scale elasticity theory is utilized to analyze the structure. Governing equations of the system are derived using Hamilton's principle and differential quadrature (DQ) method is applied to solve the partial differential equations. The effects of variable axial load and diverse boundary conditions on static/vibration instability are studied. To verify the result of the DQ method, the Galerkin weighted residual approach is used for the instability analysis. It is observed appropriate agreement for results of two different solution methods and satisfactory accuracy with those obtained in prior studies. The results of this work could be useful for engineers and designers in order to produce and design nano/micro structures in thermo-elastic medium.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

A Product-Focused Process Design System(PFPDS) for High Comforts Artificial Leather Fabrics (고감성 인조피혁개발을 위한 제품중심 공정설계 시스템)

  • Kim, Joo-Yong;Park, Baek-Soung;Lee, Chae-Jung
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.69-74
    • /
    • 2008
  • In this paper, a comfort evaluation system based on a product-focused process design (PFPD) has been proposed for high comforts interior seat covers. Correlations between comforts properties and physical/thermal properties of interior seat covers were examined by combining traditional regression analysis and data mining techniques. A skin sensorial comfort of leather samples was evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Soft', 'Sticky' and 'Elastic'. Thermo-physiological comfort properties of leather samples were evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Coolness to the touch' and 'Thermal and humid'. Skin sensorial comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Soft', 'Smooth', 'Voluminous' and 'Elastic'. Thermo-physiological comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Coolness to the touch' and 'Thermal and humid'.

Free Vibration Responses of Composite Plates Subjected to Transverse Magnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 판의 자유진동응답)

  • Kim, Sung-Kyun;Choi, Jong-Woon;Kim, Young-June;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.136-142
    • /
    • 2011
  • The equations of motion for composite plates incorporating magneto-thermo-elastic effects have been derived via Hamilton's principle. In order to get the insight into the implications of a number of geometrical and physical features of the system, the vibrational responses of finite composite rectangular plates immersed in a transversal magnetic field are investigated by applying the extended Galerkin method. The vibration response characteristics of a composite plate are exploited in connection with the magnetic field intensity, thermal load, and electric conductivity of fibrous composite materials. Some pertinent conclusions, which highlight the various effects induced by the magneto-thermo-elastic couplings, are outlined.

  • PDF

A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns (제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구)

  • Lee, Kye-Sub;Son, Sung-Soo;Yang, Ki-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.